2024 Impact factor 1.5
Atomic, Molecular, Optical and Plasma Physics

EPJ E - Modelling the demise of migrating brain tumour cells

© Sebastian Kaulitzki/iStockphoto

Evolution of brain tumour cells under treatment reveal that it is the peripheral tumour cells that need to be targeted

An Israeli physicist has developed a theoretical model to simulate the evolution of highly proliferating brain tumour core cells subjected to treatment by alternating radio frequency electric field. The research, by Alexander Iomin from the Israel Institute of Technology Technion in Haifa, has just been published in EPJE. In another model, the author examines the possibility of enhancing the level of treatment by targeting the outer area of the tumour.

Iomin introduced a theoretical evaluation of the effect of a standard treatment known as tumour-treating-field (TTF) on the speed of development of a type of brain tumour called glioma. To do so, he adapted a well-established model - the so-called fractal comb model, which looks like the regularly spaced teeth of a comb - based on a mathematical approach called fractional calculus. This model is based on the hypothesis that TTF treatment had limited efficiency in the outer region and would only be effective on the inner part of the tumour, which is characterised by a higher proliferation rate of cancer cells.

By contrast, the peripheral part of the tumour is characterised by high migration and low proliferation rates of cancer cells. In his second model, the author considered glioma cancer as a composite of cancer cells and normal tissue cells. Each cell type exhibits a distinctive polarisation by an electric field, following a pattern similar to fractal geometry. He established a model reflecting the difference between the two types of cells and applied fractal calculus to their geometry. Iomin suggested that because of the fractal nature of cancer cells the TTF treatment might be enhanced at certain frequencies. As a result, the cancer cells’ plasma membrane permeability would irreversibly increase, which could lead to their demise. This approach may constitute an effective non-invasive method for treating brain cancer.

A toy model of fractal glioma development under RF electricfield treatment.
A. Iomin, Eur. Phys. J. E (2012) 35: 42, DOI 10.1140/epje/i2012-12042-9

Editors-in-Chief
A. Beige, H. Kersten and P. Limao Vieira
It was my pleasure to be given the opportunity of being helpful in the scientific production process of EPJD. I enjoyed the experience as a referee for the journal: it was instructive, and its procedures were clear and simple. You can certainly count on my assistance for future similar appointments.

Luca Argenti

ISSN (Print Edition): 1434-6060
ISSN (Electronic Edition): 1434-6079

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag