2020 Impact factor 1.425
Atomic, Molecular, Optical and Plasma Physics

EPJ Plus Highlight - Physical parameters matter in terms of cancer cells’ metastatic ability

Plots of single-cell trajectories stimulated by different levels of epidermal growth factor.

Scientists develop potential visual test for diagnosing invasive states of breast cancer cells

The micro-environment surrounding cancer cells is just as important as genes in regulating tumour progression. Scientists have therefore examined the biophysical and biochemical cues occurring in the vicinity of cancer cells. This represents a departure from the traditional measurement of secreted molecules, called biomarkers. The latest research in this field, recently published in EPJ Plus, found that the presence of a substance called Epidermal Growth Factor (EGF) promotes the motility of elongated mesenchymal tumour cells, which migrate depending on their adhesive properties by climbing along collagen fibres, in contrast to rounded tumour cells, which migrate in an adhesion-independent manner. These findings stem from the work of Dongil Geum and BJ Kim in the Wu biofluifics lab at Cornell University, Ithaca, New York, USA.

Previous research has demonstrated that EGF regulates the motility of tumour cells embedded within a 3D biological matrix. The authors thus used a malignant breast tumour cell line cultured in a 3D biological gel, made of collagen, to mimic the in vivo conditions. In addition, they used live cell imaging to follow the evolution of individual cells' shape and dynamics. Combining the two approaches, they then quantified the physical parameters of the tumour cells, including their cell shape, motility types, speed and persistence.

They found that EGF promotes cell dissemination through a significant increase in cell persistence - that is, cells migrate in one direction for a long time before switching to a different direction - along with a moderate increase in speed of motion. The increase of persistence is correlated with the increase in the percentage of the mesenchymal cells within the population. This means that micro-environmental cues linked to the presence of EGF contribute to modulating the mobility of tumour cells - which by their nature can easily change and vary in form. These findings suggests that the cell aspect ratio could constitute a potential visual cue for diagnosing invasive states of breast cancer cells, and ultimately other cancer cells.

A. Beige, S. Ptasinska and A.V. Solov'yov
It was my pleasure to be given the opportunity of being helpful in the scientific production process of EPJD. I enjoyed the experience as a referee for the journal: it was instructive, and its procedures were clear and simple. You can certainly count on my assistance for future similar appointments.

Luca Argenti

ISSN (Print Edition): 1434-6060
ISSN (Electronic Edition): 1434-6079

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag