2020 Impact factor 1.425
Atomic, Molecular, Optical and Plasma Physics

EPJ H Highlight - More than one brain behind E=mc2

alt
Friedrich Hasenöhrl found proportionality between energy and its mass in a cavity filled with radiation. Source: Österreichische Zentralbibliothek fuer Physik

A new study reveals the contribution of a little known Austrian physicist, Friedrich Hasenöhrl, to uncovering a precursor to Einstein famous equation

An American physicist outlines the role played by Austrian physicist Friedrich Hasenöhrl in establishing the proportionality between the energy (E) of a quantity of matter with its mass (m) in a cavity filled with radiation. In a paper just published in EPJ H, Stephen Boughn from Haverford College in Pensylvannia argues how Hasenöhrl’s work, for which he now receives little credit, may have contributed to the famous equation E=mc2.

According to science philosopher Thomas Kuhn, the nature of scientific progress occurs through paradigm shifts, which depend on the cultural and historical circumstances of groups of scientists. Concurring with this idea, the authors believe the notion that mass and energy should be related did not originate solely with Hasenöhrl. Nor did it suddenly emerge in 1905, when Einstein published his paper, as popular mythology would have it.

Given the lack of recognition for Hasenöhrl’s contribution, the author examined the Austrian physicist’s original work on blackbody radiation in a cavity with perfectly reflective walls. This study seeks to identify the blackbody’s mass changes when the cavity is moving relative to the observer.

He then explored the reason why the Austrian physicist arrived at an energy/mass correlation with the wrong factor, namely at the equation: E = (3/8) mc2. Hasenöhrl’s error, they believe, stems from failing to account for the mass lost by the blackbody while radiating.

Before Hasenöhrl focused on cavity radiation, other physicists, including French mathematician Henri Poincaré and German physicist Max Abraham, showed the existence of an inertial mass associated with electromagnetic energy. In 1905, Einstein gave the correct relationship between inertial mass and electromagnetic energy, E=mc2. Nevertheless, it was not until 1911 that German physicist Max von Laue generalised it to include all forms of energy.

Hasenöhrl and the Equivalence of Mass and Energy. S. Boughn (2013), European Physical Journal H, DOI 10.1140/epjh/e2012-30061-5

Editors-in-Chief
A. Beige, S. Ptasinska and A.V. Solov'yov
It was my pleasure to be given the opportunity of being helpful in the scientific production process of EPJD. I enjoyed the experience as a referee for the journal: it was instructive, and its procedures were clear and simple. You can certainly count on my assistance for future similar appointments.

Luca Argenti

ISSN (Print Edition): 1434-6060
ISSN (Electronic Edition): 1434-6079

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag