2021 Impact factor 1.611
Atomic, Molecular, Optical and Plasma Physics

Structural, optical and nanomechanical properties of (111) oriented nanocrystalline ZnTe thin films

Structural, optical and nanomechanical properties of nanocrystalline Zinc Telluride (ZnTe) films of thickness upto 10 microns deposited at room temperature on borosilicate glass substrates are reported. X-ray diffraction patterns reveal that the films were preferentially oriented along the (1 1 1) direction. The maximum refractive index of the films was 2.74 at a wavelength of 2000 nm. The optical band gap showed strong thickness dependence. The average film hardness and Young's modulus obtained from load-displacement curves and analyzed by Oliver-Pharr method were 4 and 70 GPa respectively. Hardness of (1 1 1) oriented ZnTe thin films exhibited almost 5 times higher value than bulk. The studies show clearly that the hardness increases with decreasing indentation size, for indents between 30 and 300 nm in depth indicating the existence of indentation size effect. The coefficient of friction for these films as obtained from the nanoscratch test was ~0.4.

Structural, optical and nanomechanical properties of (111) oriented nanocrystalline ZnTe thin films, M.S.R.N. Kiran, S. Kshirsagar, M.G. Krishna and S.P. Tewari (2010), Eur. Phys. J. Appl. Phys. DOI 10.1051/epjap/2010071

Editors-in-Chief
A. Beige, J. Burgdörfer and S. Ptasinska
I'm specially delighted in the high quality work of the referees in revising my article which gave me a good impression about the journal and its quality. I will most certainly consider this journal as one of the major options when I need to publish the results of my research.

Sanna Lehti

ISSN (Print Edition): 1434-6060
ISSN (Electronic Edition): 1434-6079

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag

Conference announcements