2021 Impact factor 1.611
Atomic, Molecular, Optical and Plasma Physics

EPJ Plus Focus Point: Past and Present: Recent Advances in the Investigation of Ancient Materials by Means of Scientific Instrumental Techniques

This Focus Point introduces selected papers from the contributions presented at the 10th Congress of Italian Association of Archaeometry (AIAr) held in Turin (Italy) in February 2018, where a large parterre of Italian as well as International researchers shared their experiences on new and more consolidated analytical approaches on archaeological and artistic materials.

Different topics were addressed in the realm of cultural heritage, from characterisation and diagnostics to bioarchaeology and man-environment interaction. A strong focus was put on the comparison between non-invasive/non-destructive and micro-invasive methods in the study of different categories of objects, evaluating the pros and cons of each approach. Also a growing interest, accompanied by increasing technological skills, was registered for monitoring of environmental conditions to which the archaeological and artistic patrimony is subjected.


EPJ Plus Focus Point: Fractional Differential Equations in Physics: Recent Advantages and Future Direction

The Focus Point on “Fractional Differential Equations in Physics: Recent Advantages and Future Direction” presents some of the multiple open research directions within the dynamical field of fractional calculus and its applications. Traditional viewpoints together with fractional calculus models and techniques are used to provide the readers with a full picture of how dynamic and useful fractional calculus ideas are in treating the dynamics of complex phenomena arising from science and engineering. We hope that the research articles of this Focus Point will motivate young researchers to apply their original ideas for solving the multiple open problems within fractional calculus.


EPJ Plus Highlight - Science reveals improvements in Roman building techniques

The Atrium Vestae in Rome from https://commons.wikimedia.org/wiki/ File:House_of_the_Vestal_Virgins_ (Atrium_Vestae),_Upper_Via_Sacra, _Rome_(9114141425).jpg
Carole Raddato from Frankfurt, Germany [CC BY-SA 2.0 (https://creativecommons.org/ licenses/by-sa/2.0)]

A variety of scientific techniques have been combined to highlight improvements in the technologies employed by the Romans in successive modifications to the Atrium Vestae in Rome.

The Romans were some of the most sophisticated builders of the ancient world. Over the centuries, they adopted an increasingly advanced set of materials and technologies to create their famous structures. To distinguish the time periods over which these improvements took place, historians and archaeologists typically measure the colours, shapes and consistencies of the bricks and mortar used by the Romans, along with historical sources. In new research published in EPJ Plus, Francesca Rosi and colleagues at the Italian National Research Council improved on these techniques through scientific analysis of the materials used to build the Roman Forum’s Atrium Vestae. They found that successive phases of modification to the building saw improvements including higher quality raw materials, higher brick firing temperatures, and better ratios between carbonate and silicate building materials.


EPJ Plus Highlight - Science puts historical claims to the test

Science provides valuable dating tools for artefacts. From https://www.flickr.com/photos/ 85265584@N00/2434302237

The latest analytical techniques available to scientists can confirm the validity of historical sources in some cases, and suggest a need for reconsideration in others

As any historian will tell you, we can rarely take the claims made by our ancestors at face value. The authenticity of many of the artefacts which shape our understanding of the past have been hotly debated for centuries, with little consensus amongst researchers. Now, many of these disputes are being resolved through scientific research, including two studies recently published in EPJ Plus. The first of these, led by Diego Armando Badillo-Sanchez at the University of Évora in Portugal, analysed an artefact named ‘Francisco Pizarro’s Banner of Arms’ – believed to have been carried by the Spanish conquistador during his conquest of the Inca Empire in the 16th century. The second team, headed by Armida Sodo at Roma Tre University in Italy, investigated a colour print of Charlemagne – the medieval ruler who united much of Western Europe – assumed to be from the 16th century.


EPJ Plus Highlight - Improving the signal-to-noise ratio in quantum chromodynamics simulations

https://simple.wikipedia.org/wiki/File: Bosons-Hadrons-Fermions-RGB-pdf.pdf

A new Monte Carlo based simulation method enables more precise simulation for ensembles of elementary particles

Over the last few decades, the exponential increase in computer power and accompanying increase in the quality of algorithms has enabled theoretical and particle physicists to perform more complex and precise simulations of fundamental particles and their interactions. If you increase the number of lattice points in a simulation, it becomes harder to tell the difference between the observed result of the simulation and the surrounding noise. A new study by Marco Ce, a physicist based at the Helmholtz-Institut Mainz in Germany and recently published in EPJ Plus, describes a technique for simulating particle ensembles that are 'large' (at least by the standards of particle physics). This improves the signal-to-noise ratio and thus the precision of the simulation; crucially, it also can be used to model ensembles of baryons: a category of elementary particles that includes the protons and neutrons that make up atomic nuclei.


EPJ Plus Focus Point: Tests of General Relativity and Alternative Gravity Theories

Testing of fundamental physical theories at ever higher accuracy is a continuous process and hence General Relativity and the development of alternative gravity theories have always been among the interests of experimentalists, astronomers and theoreticians. The empirical basis of General Relativity is linked to an immense scope of areas, from the equivalence principle up to the variation of the gravitational constant and of other physical constants.

A new phase of studies on extensions of General Relativity and alternative gravity theories started with the discovery of the dark sector - the dark energy and dark matter - as of dominating content of the Universe.

The papers included in this Focus Point although cover a minor fraction of the above mentioned areas, nevertheless they contain timely accounts on broad topics, from tests on equivalence principle, to orbital dynamics of extended bodies in inspiraling binary systems, up to cosmology.


EPJ Plus Focus Point: Rewriting Nuclear Physics textbooks: Basic nuclear interactions and their link to nuclear processes in the Cosmos and on Earth

This topical collection contains the lectures presented at the Summer School ``Re-writing Nuclear Physics textbooks: Basic Nuclear Interactions and Their Link to Nuclear Processes in the Cosmos and on Earth" which was held at the INFN Sezione di Pisa and Department of Physics of the University of Pisa in July 2017. The School followed the format of its first edition (``Re-writing Nuclear Physics textbooks: 30 years with Radioactive Ion Beam Physics") held at the very same places two years earlier, and whose lectures have been published in EPJ Plus.

The scope of this new collection is to highlight the wonders of the Nuclear Interaction as it manifests itself in natural phenomena on Earth and in the Astrophysical context. Again, all of the contributions contain state-of-the-art information presented for an audience of educated but not necessarily expert physicists.


EPJ Plus Focus Point on New Challenges in the Scientific Applications to Cultural Heritage

In recent years, the collective efforts of scientists in the application of new technologies and methodologies to different class of archaeological material are receiving significant benefits from advances in technology.

At the same time new strategies and, in particular, networking skills and resources encouraging interaction between both humanities and sciences researchers are of crucial importance to face issues concerning the study, restoration and conservation of artworks and archaeological contexts.


EPJ Plus Managing Editor Martine Ben Amar wins Huy Duong Bui prize

Martine Ben Amar

Professor Martine Ben Amar (Sorbonne Université, Paris), Managing Editor of EPJ Plus, is the 2018 recipient of the Huy Duong Bui prize - attributed by the French Academy of Sciences for outstanding work in the fields of Mechanics, Computer Science and Astrophysics - for her pioneering work on continuum mechanical models of biological systems.

The publishers and the EPJ Plus journal team congratulate Martine Ben Amar on this prestigious achievement.


EPJ Plus Highlight - Turbulence theory closer to high-energy physics than previously thought

Higgs event at CERN Credit: Lucas Taylor / CERN [CCBY-SA 3.0]

A new research paper finds the high-energy physics concept of 'un-naturalness' may be applicable to the study of turbulence or that of strongly correlated systems of elementary particles

Many scientists have been disappointed that no new elementary particles have been discovered at CERN's Large Hadron Collider in the wake of the Higgs boson discovery in 2012. The no-show of elusive particles that had previously been predicted by theory is only one example of a 'hole' that has recently appeared in the concept of Naturalness in theoretical physics. In simple terms, the concept states that physical parameters should depend roughly equally on all the terms used to calculate them, in terms of proportion. Sauro Succi, a theoretical physicist at the Fondazione Istituto Italiano di Tecnologia in Rome, Italy, has now published an intriguing essay in the journal EPJ Plus in which he argues that several common natural phenomena do not operate under ‘Naturalness' at all. Rather, they can only be explained using parameters with widely separated numerical values.


A. Beige, J. Burgdörfer and S. Ptasinska
I'm specially delighted in the high quality work of the referees in revising my article which gave me a good impression about the journal and its quality. I will most certainly consider this journal as one of the major options when I need to publish the results of my research.

Sanna Lehti

ISSN (Print Edition): 1434-6060
ISSN (Electronic Edition): 1434-6079

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag

Conference announcements