https://doi.org/10.1140/epjd/s10053-022-00548-7
Regular Article – Plasma Physics
Electron acoustic shock waves in nonisothermal dissipative plasmas
Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, 700009, Kolkata, India
Received:
28
June
2022
Accepted:
1
November
2022
Published online:
16
November
2022
The propagation characteristics of weakly nonlinear electron acoustic waves in the presence of nonisothermal (trapped) hot electrons are investigated in collisional plasmas. The dynamics of the nonlinear waves are found to be governed by Schamel–Burgers and Schamel–Korteweg–de Vries–Burgers-type equations depending on the strength of the nonisothermal parameter. Burgers’ terms appear due to the anomalous dissipation introduced by the collisions between cold electrons and immobile ions in the presence of collective phenomena (plasma current). The derived nonlinear equations are solved analytically with the help of the Tanh method. The time-dependent computational results well agree with the analytical results and predict the possibility of the oscillatory and monotonic shock-like structures depending on the strength of the collisional drag and nonisothermality of hot electrons. The trapped electrons significantly modify the amplitude and width of the nonlinear pulse. The results may explain the shock formation and the particle acceleration mechanism in auroral plasma region.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.