https://doi.org/10.1140/epjd/s10053-022-00427-1
Regular Article – Atomic Physics
Conditions for obtaining positronium Bose–Einstein condensation in a micron-sized cavity
1
Department of Physics and Astronomy, University of California, 92521, Riverside, CA, USA
2
Materials Science and Engineering Program, University of California, 92521, Riverside, CA, USA
a
masar001@ucr.edu
g
apmjr@ucr.edu
Received:
7
March
2022
Accepted:
26
May
2022
Published online:
25
June
2022
The quest for making a triplet positronium (Ps) Bose–Einstein condensate confined in a micron-sized cavity in a material such as porous silica faces at least three interrelated problems: (1) About spin polarized Ps atoms must be injected into a small cavity within a porous solid material without vaporizing it. (2) It is known that Ps atoms confined in 30–100 nm diameter cavities in porous silica do not remain in the gas phase, but become stuck to the cavity walls at room temperature (Cooper et al., Phys. Rev. B 97:205302, 2018). (3) Cooling a gas of Ps atoms to cryogenic temperatures by energy exchange with the walls would be a very slow process (Saito and Hyodo, in: Surko, Gianturco (eds) New Directions in Antimatter Chemistry and Physics, Springer Dordrecht, Netherlands, 2001) because of the relatively low collision rate with the walls and the large mismatch between the masses of the Ps and the wall atoms. A possible solution of these difficulties is presented, based on cooling the implanted positrons in an isotopically pure diamond single crystal target, subsequent saturating of the wall Ps coverage so that a substantial portion of the Ps will be in the gaseous state, and thermalizing the gas-phase Ps via collisions with the low effective mass wall Ps. A design process for the target material is outlined as well, including preliminary results in porous cavity fabrication using focused ion beam milling.
© The Author(s) 2022. corrected publication 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.