https://doi.org/10.1140/epjd/s10053-021-00137-0
Regular Article - Atomic and Molecular Collisions
DFT study of low-energy electron interaction with pyridine, pyrazine and their halo derivatives
Division of Electron Collisions Physics, Institute of Physics and Applied Computer Science, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, ul. Gabriela Narutowicza 11/12, 80-233,, Gdańsk, Poland
Received:
12
January
2021
Accepted:
25
March
2021
Published online:
19
April
2021
In this work, the density functional theory with B3LYP hybrid functional was employed to calculate quantities useful for estimating the behavior of pyridine, pyrazine and their derivatives monosubstituted with Cl or Br atom, when exposed to low-energy electron impact. Vertical electron affinities obtained in several Pople basis sets and in aug-cc-pVTZ basis set are reported. Although some of the investigated molecules do not form stable anions, the results are in a satisfactory agreement with the available, albeit sparse experimental data, if the diffuse functions are included in calculations. It was found that the 6-31+G* basis is sufficient and its further enlargement does not significantly change the results. At this level of theory, potential energy curves, supported by enthalpies of dissociation to the neutral and anion fragment, were also determined for the description of the dissociative electron attachment. According to B3LYP, the potential energy curves of the halogen bond are almost repulsive in halopyridines, whereas halopyrazine anions require small activation energy for dissociation. Vertical electron affinities, enthalpies and equilibrium C-X distances (X=H, Cl, Br) were also calculated using Møller-Plesset second-order perturbation theory.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.