https://doi.org/10.1140/epjd/e2017-80247-x
Regular Article
Quantum sensing of rotation velocity based on transverse field Ising model
1 Beijing Computational Science Research Center, Beijing 100193, P.R. China
2 Graduate School of Chinese Academy of Engineering Physics, Beijing 100084, P.R. China
a e-mail: cpsun@csrc.ac.cn
Received:
11
April
2017
Received in final form:
23
June
2017
Published online: 10 October 2017
We study a transverse-field Ising model (TFIM) in a rotational reference frame. We find that the effective Hamiltonian of the TFIM of this system depends on the system’s rotation velocity. Since the rotation contributes an additional transverse field, the dynamics of TFIM sensitively responses to the rotation velocity at the critical point of quantum phase transition. This observation means that the TFIM can be used for quantum sensing of rotation velocity that can sensitively detect rotation velocity of the total system at the critical point. It is found that the resolution of the quantum sensing scheme we proposed is characterized by the half-width of Loschmidt echo of the dynamics of TFIM when it couples to a quantum system S. And the resolution of this quantum sensing scheme is proportional to the coupling strength δ between the quantum system S and the TFIM, and to the square root of the number of spins N belonging the TFIM.
Key words: Quantum Information
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2017