2016 Impact factor 1.288
Atomic, Molecular, Optical and Plasma Physics

Welcoming Prof. Kai Bongs as new Editor-in-Chief of EPJ Quantum Technology

Kai Bongs

It is with great pleasure that we announce that Professor Kai Bongs from the University of Birmingham, UK, has been appointed Editor-in-Chief of EPJ Quantum Technology.

Prof. Bongs is the director of the UK National Quantum Technology Hub in Sensors and Metrology, a consortium of researchers from 11 universities, NPL and over 120 companies, which focuses in translating quantum science enabled precision measurements with cold atoms into technology and economic benefit. He has been working in the field of cold atoms for over 20 years. After studying Physics up to his PhD in the group of Prof. Wolfgang Ertmer at the University of Hannover and a postdoctoral appointment on atom interferometry in the group of Mark Kasevich at Yale University, he did his Habilitation on quantum gas mixtures working with Prof. Klaus Sengstock at the University of Hamburg. Since 2007 he holds a chair at the University of Birmingham heading the group of quantum matter and directing the Birmingham part of the Midlands Ultracold Atom Research Centre, MUARC. His research achievements have been recognised by a Royal Society Wolfson Research Merit Award.

Prof. Bongs takes on this position after the founding Editor, Prof. Gerard Milburn stepped down at the end of 2017. We take this opportunity to show our gratitude to Prof. Milburn for his role in bringing EPJ Quantum Technology to life and for his hard work and leadership in the past four years.

EPJ QT Highlight - How does Earth’s spacetime deformation affect quantum communications?

Credit: CQT, National University of Singapore

Jan Kohlrus investigates relativitic effects to consider when setting up quantum communication systems.

The interplay and overlap between relativity and quantum theory are among the most complex and challenging open problems of modern theoretical physics. This grey area has been extensively studied on the theoretical side, sometimes following very speculative and exotic directions, while very few experiments have been proposed in a way that rigorously incorporates relativity and quantum features.

The purpose of our work is to propose feasible experiments that involve quantum fields in a relativistic framework. In our recent article in EPJ Quantum Technology, we study how observers that undergo different motion, and experience different strengths of the gravitational field, measure pulses of light that propagate from one user to another. In particular, we look at quantum communication schemes between Earth and satellite links, as well as between two satellites.

Continue reading Jan’s post here.

EPJ QT Highlight - Quantum security from small satellites

Credit: CQT, National University of Singapore

Shoebox sized satellites could be the key to fast-track development of space quantum communication, writes author Daniel Oi in a contribution to the SpringerOpen blog.

Quantum computing threatens the security of public key cryptosystems that secure the internet. But what quantum takes away, it can also give back. The technique of quantum key distribution (QKD) promises codes that are guaranteed by physics to be, in principle, unbreakable.

In EPJ Quantum Technology, we propose a CubeSat Quantum Communications Mission (CQuCoM) with a vision towards a globe-spanning constellation of QKD satellites. We are an international consortium of six research entities and one company across six countries.

Continue reading the blog post here.

T. Calarco, H. Kersten and A.V. Solov'yov
It has been a pleasure for me accepting the referee's commitment for your journal and I am hopeful to collaborate with you again in the future.

Simone Panaro

ISSN (Print Edition): 1434-6060
ISSN (Electronic Edition): 1434-6079

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag