https://doi.org/10.1140/epjd/s10053-024-00924-5
Regular Article – Ultraintense and Ultrashort Laser Fields
Investigating the influence of ionization on high-harmonic generation in Ar–Ne and Ar–Kr gas mixtures driven by kHz laser pulses
1
Department of Physics, Indian Institute of Technology Hyderabad, Kandi, India
2
Optical Sciences Centre, Swinburne University of Technology, 3122, Melbourne, VIC, Australia
Received:
12
July
2024
Accepted:
4
October
2024
Published online:
19
October
2024
We conducted a study on high-harmonic generation (HHG) in mixed gases, specifically Ar–Ne or Ar–Kr, with the aim of investigating the impact of ionization rate and neutral dispersion on the HHG process. Our focus was on understanding how these factors influence the HHG process when using gases with low and high ionization potentials. Based on phase-matched high-order harmonic generation in pure Ar gas, our investigation shows that the influence of plasma dispersion and neutral dispersion can be varied independently in mixed gas while the laser intensity is kept constant. Our results reveal that the addition of low ionization potential gases, such as Kr, to the Ar gas leads to a more rapid reduction in phase matching, due to the strong effects of ionization. The observed experimental outcomes align well with our theoretical calculations. This study provides valuable insights into the interplay of ionization rate and neutral dispersion in high-harmonic generation and the special requirement of the controlling of laser intensity for phase-matched harmonic generation. The findings contribute to a deeper understanding of the underlying dynamics and offer practical considerations for optimizing HHG properties.
Copyright comment Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
© The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.