https://doi.org/10.1140/epjd/s10053-023-00664-y
Regular Article – Atomic and Molecular Collisions
Study of graphene by proton rainbow scattering
Laboratory of Physics, “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P. O. Box 522, 11001, Belgrade, Serbia
Received:
2
March
2023
Accepted:
5
May
2023
Published online:
30
May
2023
We have studied the transmission of 5 keV protons through graphene. Proton dynamics was modeled by classical theory. Proton trajectories define a mapping of the set of initial proton positions to the set of scattering angles. Singularities of the Jacobian associated with the introduced mapping form curves known as the rainbow lines. The differential cross section is infinite along the rainbow lines, making the proton count significantly larger along the rainbow pattern. Hence, rainbows dominantly determine the shape and size of the angular distribution of transmitted protons. It was found that reorientation of the graphene with respect to the incident beam direction and deformation of the graphene crystal lattice induce the transformation of the proton rainbow pattern. We thoroughly studied the morphological properties of the proton rainbow pattern. It was shown that angular distribution and the corresponding rainbow pattern could be used to determine the covariance matrix of atomic thermal displacements and to characterize point defects present in graphene.
© The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.