https://doi.org/10.1140/epjd/s10053-022-00587-0
Regular Article – Plasma Physics
On the use of Ar I 517.753 nm spectral line for electric field measurements in the cathode sheath of a Grimm-type glow discharge source
1
Faculty of Physics, University of Belgrade, P.O. Box 44, 11001, Belgrade, Serbia
2
Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade, Serbia
Received:
31
October
2022
Accepted:
16
December
2022
Published online:
4
January
2023
We present the results of the optical emission spectroscopy study of the Ar I 517.753 nm spectral line, observed at different positions in the cathode sheath of an abnormal DC Grimm-type glow discharge source operated in argon. The line profiles were recorded parallel to the cathode surface (side-on view), along the discharge axis from the cathode towards the negative glow. The spectra show a red line shift, which diminishes with the distance from the cathode surface and decreasing electric field. This allows experimental determination of the coefficient C in quadratic relation, Δν = CE2, between the wavenumber Stark shifts, Δν, and electric field strength, E. The above relation is a low-field (up to 25 kV/cm) approximation of the quadratic dependence of the upper-level shift, measured for a large set of argon lines at high electric fields (up to 700 kV/cm) by Windholz (Phys Scr 21:67–74, 1980). One of these lines, Ar I 537.349 nm, is used here for independent measurement of the electric field E and correlated with the Ar I 517.753 nm upper-level wavenumber shift Δν to obtain a line-specific coefficient C. In this way, the Ar I 517.753 nm spectral line complements the set of argon lines suitable for Stark spectroscopy diagnostics of the electric field distribution and cathode sheath length, the knowledge of which allows for a better understanding and description of the glow discharge processes through various theoretical models.
© The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.