https://doi.org/10.1140/epjd/s10053-021-00093-9
Regular Article - Atomic Physics
Spatial confinement, non-Hermitian Hamiltonians and related problems
1
Mathematics Section School of Digital Technologies and Arts, Staffordshire University, College Road, ST4 2DE, Stoke-on-Trent, UK
2
Department of Physical Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
a
brian.burrows2@btopenworld.com
Received:
27
November
2020
Accepted:
17
February
2021
Published online:
2
March
2021
We treat simple examples of systems described by non-relativistic model Hamiltonians which are unconventional. They are not necessarily Hermitian operators. In practice, they often contain applied external fields which are not necessarily small, and they seek to describe the effects of spatial confinement more realistically than most of the classic calculations (some of them by the present authors). A much studied model of a free particle confined by a non-real potential can be accommodated within the same theoretical framework. Numerical treatment of these and similar problems seems well within the capacity of very modest computer systems, as exemplified by a few tabulations.
© The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2021