https://doi.org/10.1140/epjd/s10053-021-00043-5
Regular Article - Atomic Physics
Electron-impact ionization of the Pb atom
1
Department of Physics, Auburn University, Auburn, AL, USA
2
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
Received:
19
November
2020
Accepted:
4
January
2021
Published online:
8
February
2021
Electron-impact ionization cross sections are calculated for the ground configuration of the Pb atom. Time-dependent close-coupling cross sections for the direct ionization of the 6s and 6p subshells leading to single ionization are calculated with and without a polarization potential. Configuration-average distorted-wave cross sections for the direct ionization of the 6s and 6p subshells leading to single ionization are also calculated with and without a polarization potential. We find the time-dependent close-coupling cross sections using a polarization potential to be in good agreement with convergent-close-coupling cross sections using a polarization potential. The total direct ionization cross sections are compared to two sets of experimental measurements. The differences between the direct ionization cross sections and the experimental measurements are mainly due to indirect ionization cross sections coming from the excitation followed by autoionization.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.