https://doi.org/10.1140/epjd/e2019-100589-1
Regular Article
Electron acoustic envelope solitons in non-Maxwellian plasmas
1
COMSATS University Islamabad Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
2
National Centre for Physics, Shahdara Valley Road, Islamabad, Pakistan
a email: shakirkhattak32@yahoo.com
Received:
22
November
2019
Received in final form:
19
December
2019
Published online:
6
February
2020
The NASA Van Allen Probes spacecraft has recently observed broadband electrostatic turbulence in the inner magnetosphere which has been conjectured to be produced by large amplitude electrostatic solitary waves of generally two types [D.M. Malaspina, J.R. Wygant, R.E. Ergun, G.D. Reeves, R.M. Skoug, B.A. Larsen, J. Geophys. Res.: Space Phys. 120, 4246 (2015); C.S. Dillard, I.Y. Vasko, F.S. Mozer, O.V. Agapitov, J.W. Bonnell, Phys. Plasmas 25, 022905, (2018)]. The solitary waves with highly asymmetric bipolar parallel electric field have been recently shown to correspond to the electron-acoustic plasma mode (existing due to two-temperature electron population) [C.S. Dillard, I.Y. Vasko, F.S. Mozer, O.V. Agapitov, J.W. Bonnell, Phys. Plasmas 25, 022905, (2018)]. These findings along with the observations of non-Maxwellian electrons in terrestrial magnetosheath and planetary magnetospheres [W. Masood, S.J. Schwartz, M. Maksimovic, A.N. Fazakerley, Ann. Geophys. 24, 1725 (2006); W. Masood, S.J. Schwartz, J. Geophys. Res. 113, A01216 (2008); M.N.S. Qureshi, W. Nasir, W. Masood, P.H. Yoon, H.A. Shah, S.J. Schwartz, J. Geophys. Res.: Space Phys. 119, 10059 (2014); M.N.S. Qureshi, W. Nasir, R. Bruno, W. Masood, MNRAS 488, 954 (2019)] have prompted us to theoretically investigate the problem of amplitude modulation of the electron acoustic waves (EAWs) in plasmas whose ingredients are stationary ions, inertial cold electrons and warm (r,q) distributed inertialess electrons. The nonlinear Schrödinger equation (NLSE) that governs the modulational instability (MI) of the EAWs has been derived using the standard reductive perturbation technique (RPT). The presence of the warm (r,q) distributed electrons has been shown to influence the existence conditions of MI of the EAWs and both the indices have been found to cause a decrease in the growth rate of MI. A detailed comparison has also been drawn between double spectral index (r,q), kappa and Maxwellian distribution functions and the differences are highlighted. Additionally, the nondimensional parameter α=nc0/ne0 which is the equilibrium density ratio of the cold to hot electron component, has been shown to play an important role in the formation of envelope solitary excitations.
Key words: Plasma Physics
© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature, 2020