https://doi.org/10.1140/epjd/e2016-70338-7
Regular Article
Dynamics of solitons in the one-dimensional nonlinear Schrödinger equation
Institut für Theoretische Physik 1, Universität
Stuttgart, 70550
Stuttgart,
Germany
a
e-mail: andrej.junginger@itp1.uni-stuttgart.de
Received:
20
May
2016
Received in final form:
4
August
2016
Published online:
3
November
2016
We investigate bright solitons in the one-dimensional Schrödinger equation in the framework of an extended variational approach. We apply the latter to the stationary ground state of the system as well as to coherent collisions between two or more solitons. Using coupled Gaussian trial wave functions, we demonstrate that the variational approach is a powerful method to calculate the soliton dynamics. This method has the advantage that it is computationally faster compared to numerically exact grid calculations. In addition, it goes far beyond the capability of analytical ground state solutions, because the variational approach provides the ability to treat excited solitons as well as dynamical interactions between different wave packets. To demonstrate the power of the variational approach, we calculate the stationary ground state of the soliton and compare it with the analytical solution showing the convergence to the exact solution. Furthermore, we extend our calculations to nonstationary solitons by investigating coherent collisions of several wave packets in both the low- and high-energy regime. Comparisons of the variational approach with numerically exact simulations on grids reveal excellent agreement in the high-energy regime while deviations can be observed for low energies.
Key words: Cold Matter and Quantum Gas
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2016