https://doi.org/10.1140/epjd/e2014-50185-4
Regular Article
Addressable parallel cavity-based quantum memory
Faculty of Physics, St. Petersburg State University,
Ul’janovskaya 3, 198504
Petrodvorets, St.
Petersburg, Russia
a
e-mail: sokolov.i.v@gmail.com
Received: 6 March 2014
Received in final form: 13 June 2014
Published online: 25 September 2014
We elaborate theoretically a model of addressable parallel cavity-based quantum memory for light able to store multiple transverse spatial modes of the input light signal of finite duration and, at the same time, a time sequence of the signals by side illumination. Having in mind possible applications for, e.g., quantum repeaters, we reveal the addressability of our memory, that is, its handiness for the read-out on demand of a given transverse quantized signal mode and of a given signal from the time sequence. The addressability is achieved by making use of different spatial configurations of pump wave during the write-in and the readout. We also demonstrate that for the signal durations of the order of few cavity decay times, better efficiency is achieved when one excites the cavity with zero light-matter coupling and finally performs fast excitation transfer from the intracavity field to the collective spin. On the other hand, the light-matter coupling control in time, based on dynamical impedance matching, allows to store and retrieve time restricted signals of the on-demand smooth time shape.
Key words: Quantum Optics
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2014