https://doi.org/10.1140/epjd/e2013-40165-7
Regular Article
Nonlinear pulsational eigenmodes of a planar collisional dust molecular cloud with grain-charge fluctuation
Department of Physics, Tezpur
University, Napaam-784028, Tezpur, Assam,
India
a
e-mail: pkk@tezu.ernet.in
Received:
24
March
2013
Received in final form:
14
June
2013
Published online:
12
September
2013
We try to present a theoretical evolutionary model leading to the excitations of nonlinear pulsational eigenmodes in a planar (1D) collisional dust molecular cloud (DMC) on the Jeans scale. The basis of the adopted model is the Jeans assumption of self-gravitating homogeneous uniform medium for simplification. It is a self-gravitating multi-fluid consisting of the Boltzmann distributed warm electrons and ions, and the inertial cold dust grains with partial ionization. Dust-charge fluctuations, convections and all the possible collisions are included. The grain-charge behaves as a dynamical variable owing mainly to the attachment of the electrons and ions to the grain-surfaces randomly. The adopted technique is centered around a mathematical model based on new solitary spectral patterns within the hydrodynamic framework. The collective dynamics of the patterns is governed by driven Korteweg-de Vries (d-KdV) and Korteweg-de Vries (KdV) equations obtained by a standard multiscale analysis. Then, simplified analytical and numerical solutions are presented. The grain-charge fluctuation and collision processes play a key role in the DMC stability. The sensitive dependence of the eigenmode amplitudes on diverse relevant plasma parameters is discussed. The significance of the main results in astrophysical, laboratory and space environments are concisely summarized.
Key words: Plasma Physics
© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2013