https://doi.org/10.1140/epjd/e2012-30517-2
Colloquium
Application of the time-dependent close-coupling approach to few-body atomic and molecular ionizing collisions
1
Theoretical Division, Los Alamos National
Laboratory, Los Alamos,
87545
NM,
USA
2
Department of Physics, Auburn University,
Auburn, 36849
AL,
USA
a e-mail: jcolgan@lanl.gov
Received:
21
August
2012
Received in final form:
20
September
2012
Published online:
20
November
2012
We review the recent progress made in applying the time-dependent close-coupling approach to ionizing collisions of electrons, photons, and ions with small atoms and molecules. The last twenty years have seen a proliferation of non-perturbative approaches applied to fundamental atomic and molecular scattering processes. Such processes form the building blocks of describing the dynamics of plasmas over a wide range of temperatures and densities, and also provide insight into the long-range Coulomb interactions between charged particles. Studies of the few-body Coulomb problem presented in electron, photon, or ion-impact ionization of small atoms and molecules, by direct solution of the time-dependent Schrödinger equation, are particularly useful because the complicated three-body boundary conditions of more than one continuum particle in a Coulomb potential are not required. With the continuing growth and increasing availability of high-performance computing resources, such methods can now be applied to a wide variety of scattering processes. The recent progress made using such a time-dependent approach is described in this colloquium. In this paper, we focus on the recent results obtained for one-, two-, and three-electron systems, thus building on a previous review of the time-dependent close-coupling method [M.S. Pindzola et al., J. Phys. B 40, R39 (2007)], which also described the application to multi-electron targets.
Key words: Atomic and Molecular Collisions
© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2012