https://doi.org/10.1140/epjd/e2012-20739-7
Regular Article
Instability control in microwave-frequency microplasma
Electrical and Computer Engineering, Tufts
University, Medford,
02155
Massachusetts,
USA
a e-mail: hopwood@ece.tufts.edu
Received:
17
December
2011
Received in final form:
28
March
2012
Published online:
23
May
2012
Atmospheric argon microplasmas driven by 1.0 GHz power were studied by microwave circuit analyses and spatially-resolved optical diagnostics. These studies illuminate the mechanisms responsible for microplasma stability. A split-ring resonator (SRR) microplasma source is demonstrated to reflect excess microwave power, preventing the ionization overheating instability while limiting electron density to approximately 1 × 1014 cm-3 and OH rotational temperature to 760 K at 0.76 W. Providing the SRR microplasma with an electrical path to ground, however, allows the microplasma to transition from the SRR mode to the so-called transmission line mode (T-line). This transition is due to matching of the microplasma and transmission line impedances. The higher power T-line mode supports a more intense microplasma with electron density of 1 × 1015 cm-3 and OH rotational temperature of 1480 K with 15 W absorbed power. While the SRR mode is optimized for ignition and sustaining a stable nonequilibrium plasma, and T-line mode is better suited for driving a hot, high density microplasma. The estimated microwave discharge voltages were 15 V and 35 V in SRR mode and T-line mode, respectively, and the voltages are rather independent of input power. Microplasma stability is due to a combination of impedance mismatching and direct control of power, both inherent to microwave circuitry.
Key words: Plasma Physics
© The Author(s) 2012. This article is published with open access at Springerlink.com