https://doi.org/10.1140/epjd/e2004-00189-8
Smoothed Wigner functions: a tool to resolve semiclassical structures
1
Departamento de Física, Comisión Nacional de Energía Atómica.
Av. del Libertador 8250, 1429 Buenos Aires, Argentina
2
Instituto de Ciencias, Universidad Nacional de General Sarmiento,
J.M. Gutierrez 1150, 1613 Los Polvorines Prov. Buenos Aires, Argentina
3
Departamento de Física “J.J. Giambiagi”,
FCEN, UBA, Pabellón 1, Ciudad Universitaria,
1428 Buenos Aires, Argentina
Corresponding author: a rivas@tandar.cnea.gov.ar
Received:
18
August
2004
Published online:
21
December
2004
The Wigner and Husimi distributions are the usual phase space
representations of a quantum state. The Wigner distribution has structures
of order . On the other hand, the Husimi distribution is a
Gaussian smearing of the Wigner function on an area of size
and
then, it only displays structures of size
. We have developed a
phase space representation which results a Gaussian smearing of the Wigner
function on an area of size
, with
. Within
this representation, the Husimi and Wigner functions are recovered when
and
respectively. We treat the application of
this intermediate representation to explore the semiclassical limit of quantum
mechanics. In particular we show how this representation uncover
semiclassical hyperbolic structures of chaotic eigenstates.
PACS: 05.45.Mt – Quantum chaos; semiclassical methods / 03.65.Sq – Semiclassical theories and applications
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag, 2005