https://doi.org/10.1140/epjd/e2003-00248-8
The short-range reaction matrix in MQDT treatment of dissociative recombination and related processes
1
Laboratoire de Photophysique Moléculaire, bâtiment 210,
Université Paris-Sud, 91405 Orsay, France
2
Centre de Physique Atomique Moléculaire et Optique Quantique (CEPAMOQ),
Université de Douala, B.P. 24157, Douala, Cameroun
3
Institute for Space Science, P.O. Box MG-36, 76900
Bucharest, Romania
4
Foundation of Computer Science Laboratory, University of Aizu,
Ikki, Aizuwakamatsu 965-8580, Japan
5
Laboratoire de Mécanique, Physique et Géosciences, Université du Havre,
76058 Le Havre, France
6
Laboratoire de Chimie Physique,
Université Paris VI, Paris, France
Corresponding author: a valery.ngassam@ppm.u-psud.fr
Received:
6
January
2003
Revised:
18
April
2003
Published online:
5
August
2003
We discuss the Lippmann-Schwinger equation which governs the
short-range reaction matrix (K-matrix) in the two-step multichannel quantum
defect theory (MQDT) of dissociative recombination and related processes. We
show that, if the energy dependence of the electronic coupling between the
dissociative state and the ionization continua can be neglected, the
convergence of the Born expansion of the Lippmann-Schwinger equation is
achieved at second order. For the case of energy-dependent interaction,
higher order effects are tested using a non-perturbative method for solving
the Lippmann-Schwinger equation. Numerical examples are given for the
dissociative recombination and vibrational de-excitation of the H molecular ion.
PACS: 34.80.Gs – Molecular excitation and ionization by electron impact / 34.80.Ht – Dissociation and dissociative attachment by electron impact / 34.80.Lx – Electron-ion recombination and electron attachment
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag, 2003