https://doi.org/10.1140/epjd/e2003-00101-2
Core size effects on electrodeposition of gold nanoparticles attached with biferrocene derivatives
Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
Corresponding author: a nisihara@chem.s.u-tokyo.ac.jp
Received:
10
September
2002
Published online:
3
July
2003
Biferrocene-modified gold nanoparticles (Aun-BFc) comprising 1.7, 2.2 and 2.9 nm in average core diameter, d, were synthesized by a substitution reaction of octyl thiolate-covered nanoparticles with biferrocene-terminated alkanethiol, 1-(9-thiononyl-1-one)-1',1''-biferrocene (BFcS). All sizes of Aun-BFc undergo two-step oxidation reactions in 0.1 mol dm-3 Bu4NClO4-CH2Cl2 and consecutive potential scans including the second oxidation process lead to the formation of an adhesive redox-active gold nanoparticle film on an electrode. The thickness of the Aun-BFc film is controllable by the number of potential scans. The scanning tunneling microscope images reveal that the Aun-BFc (d = 2.9 nm) film forms many domains of the assembled Aun-BFcs, especially the particles are isotropically assembled in line.
PACS: 73.22.-f – Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag, 2003