https://doi.org/10.1140/epjd/e2003-00029-5
Analytical study of four-wave mixing with large atomic coherence
1
Fachbereich Physik, Universität Kaiserslautern, 67663 Kaiserslautern, Germany
2
Physics Department, Blackett Laboratory, Imperial
College, London SW7 2BZ, UK
Corresponding author: a korsunsky@physik.uni-kl.de
Received:
16
August
2002
Published online:
4
February
2003
Four-wave mixing in resonant atomic vapors based on maximum coherence induced by Stark-chirped rapid adiabatic passage (SCRAP) is investigated theoretically. We show the advantages of a coupling scheme involving maximum coherence and demonstrate how a large atomic coherence between a ground and an highly excited state can be prepared by SCRAP. Full analytic solutions of the field propagation problem taking into account pump field depletion are derived. The solutions are obtained with the help of an Hamiltonian approach which in the adiabatic limit permits to reduce the full set of Maxwell-Bloch equations to simple canonical equations of Hamiltonian mechanics for the field variables. It is found that the conversion efficiency reached is largely enhanced if the phase mismatch induced by linear refraction is compensated. A detailed analysis of the phase matching conditions shows, however, that the phase mismatch contribution from the Kerr effect cannot be compensated simultaneously with linear refraction contribution. Therefore, the conversion efficiency in a coupling scheme involving maximum coherence prepared by SCRAP is high, but not equal to unity.
PACS: 42.50.Gy – Effects of atomic coherence on propagation, absorption, and amplification of light / 42.65.Ky – Harmonic generation, frequency conversion / 32.80.Qk – Coherent control of atomic interactions with photons
© EDP Sciences, Società Italiana di Fisica, Springer-Verlag, 2003