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Abstract. We review a formalism that can be used to calculate the microphase-separated crystallographic
structures of multi-component wormlike polymer melts. The approach is based on a self-consistent field
theory of wormlike polymers where the persistence length of each component is an important parameter. We
emphasize on an analysis of the number of independent parameters required to specify a problem in general,
for a system that includes Flory-Huggins and Maier-Saupe energies. Examples of recent applications are
also briefly demonstrated: AB homopolymer interface, AB diblock copolymers, and rod-coil copolymers.

Introduction

The foundation of a self-consistent field theory (SCFT),
which is a convenient theoretical tool to describe the or-
dered structures of copolymer melts, contains three es-
sential ingredients in theoretical polymer physics. a) The
transformation from a particle-based microscopic formal-
ism to a mean-field formalism enables focusing on the over-
all phase-separated structures. b) The statistical weight of
a polymer configuration specifies the basic properties of a
constituting polymer including degree of polymerization,
block and branched architecture, and segment persistency.
c) The segment-segment interactions are usually described
by concepts such as the Flory-Huggins (FH) mixing free
energy and the Maier-Saupe (MS) liquid-crystal free en-
ergy, semi-phenomenologically.

The use of a Gaussian statistical weight for a linear
polymer is often referred to as the Edwards model [1]. It
has a relatively simple mathematical structure, which can
be used to describe a flexible polymer system within a
length scale not far from a typical radius of gyration. For
a spatially inhomogeneous polymer melt that displays a
structural pattern where every component is described by
a spatially varying volume fraction, another essential con-
cept in polymer-melt physics is the incompressibility con-
dition which states that the sum of all volume fraction is a
spatially uniform constant [2]. The SCFT formalism built
from these ideas supports the current theoretical and ex-
perimental understanding of many polymeric systems and
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is well-documented in the literature. A significant num-
ber of researchers have contributed to this active area of
research. Representatively, refs. [2–10] either give detailed
derivation or review summary of this theoretical approach.

One of the length scales that characterize a wormlike
polymer block is the persistence length λ, below which the
polymer segment appears rigid. A properly built wormlike-
polymer theory exhibits two asymptotic limits: at small λ
it reduces to a theory describing flexible chains and at
large λ it models a rodlike segment [11]. In recent years,
a SCFT formalism, where the wormlike-chain model is
used in b) instead of the Edwards model, has been used
to study multiple-component polymer systems, including
problems such as specific AB polymer blends and AB di-
block copolymers where both AB polymers are assumed
to have the same persistence length [12–16], and rod-coil
diblock copolymer where the persistence lengths of one
block is large and the other is small [17–22]. A typical
probability distribution function of a constituent compo-
nent depends on both spatial position, represented by a
coordinate r, and orientational direction, represented by
a unit vector u, of a polymer segment.

In the classical example of an AB diblock copolymer
melt of flexible polymers having the same Kuhn length,
the phase diagram can be drawn by using two reduced
parameters: the reduced FH parameter χN and the over-
all volume fraction of one of the two types of monomers
f [2, 9]. Needless to say, the persistencies of the polymer
blocks introduce additional parameters that are required
to specify a particular wormlike copolymer problem. In
the current Perspective, we clarify the number of reduced,
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Fig. 1. Sketches for (a) linear, (b) 3-arm star, and (c) side-
chain copolymer chains. Each segment is characterized by a
monomeric unit of length b, which is used for volume-packing
statistics, and a persistence length, which is used for confor-
mation description.

independent parameters required to establish a phase di-
agram of a multi-component wormlike-polymer melt in a
minimal model. In particular, we examine a polymer melt
made of linearly connected blocks (an example of a tri-
block polymer is shown in fig. 1(a)). Comments are made
on modeling other branched structures later. An overview
is given on solved and unsolved problems.

Packing of monomers

The system consists of n monodisperse linear wormlike
block copolymers in volume V , where every linear chain is
made of m blocks of polymers of difference species. Every
polymer is modelled by a continuous space curve, where
the j-th block is characterized by a bare persistence length
λj , which specifies the orientation-orientation correlation
length of a single polymer.

For the purpose of examining volume-packing of mul-
tiple polymers, we need to introduce another length scale,
the segmental length bj for the j-th block. Two such seg-
ments on different types of blocks are assumed to have the
same excluded-volume effects, occupying a basic volume
element ρ−1

0 which is block-type independent. To avoid
confusion, in this Perspective we use the terminology “seg-
ment” specifically to describe such a statistical unit, not
to be confused with the general meaning of “portion of
a polymer”. The necessity for introduction of this length
scale is evident in an extreme example of packing flexible
chains (small λ) with rodlike molecules (λ � 1) made of
monomers of similar volumes; the segmental lengths (bj)
have a similar value and the persistence lengths (λj) differ
tremendously. Conceptually and physically these are two
different length scales.

Assume that a single polymer contains a total of Nj

segments of the j-th species (j = 1, . . . ,m) and the
summed total segment number N =

∑
j Nj . The over-

all volume fraction of the j-th species in the system is

fj = Nj/N , where
m∑

j=1

fj = 1. (1)

The total contour polymer length is then L =
∑

j Njbj .
Within the summation, Njbj is the contour length of the
j-th block. A simple re-arrangement hence yields

m∑

j=1

fj
Nbj

L
= 1. (2)

Note that unless bj are all the same (when the polymers
are conformationally symmetric), the volume fraction fj

is different from the length fraction Njbj/L, as different
types of blocks might have different segment packing sizes.
Normalization conditions (1) and (2) are independent in
general.

The configuration of a typical polymer, modelled by
a continuous curve, is specified by the spatial coordinate
R(s) where s is an arcvariable that starts at one poly-
mer end where s = 0 and ends at another end where
s = L (fig. 1(a)). Within block j, to count the number of
j monomers within a polymer portion of length Δs, we
use Δs/bj , which is dimensionless. To measure the frac-
tion of monomers within this polymer portion, using all
monomers along the chain N as the base, we have Δs/Nbj ,
or in differential limit,

dt = ds/Nbj . (3)

The ranges of variables s and t for block j are [sj−1, sj ]
and [tj−1, tj ], where

sj =
j∑

k=1

Nkbk and tj =
j∑

k=1

fk (j > 1), (4)

respectively with s0 = 0 and t0 = 0. The range over the
entire polymer for t is [0, 1].

The volume fraction of type-j segments, φj(r,u), now
depends on both spatial and orientational variables (r and
u), and satisfies

1
V

∫

drduφj(r,u) = fj . (5)

The variation of φj(r,u) gives rise to a microstructure and
is a central focus of a theoretical calculation, which can
be used to compare with experimental data. According
to (1), the above definition yields a trivial result

1
V

m∑

j=1

∫

drduφj(r,u) = 1. (6)

Incompressibility condition

One basic assumption commonly made in studying a poly-
mer melt is the incompressibility condition,

m∑

j=1

∫

duφj(r,u) = 1. (7)
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This imposed condition can be contrasted with the trivial
result in eq. (6), and is specified for any r. Physically, it
implies that in a unit volume about r, multi-component
polymer segments fill the space within a given melt den-
sity ρ0, plugging in from different directions. The volume
fraction itself, however, can have a nonuniform direction-
dependence, typical for a system that displays a liquid-
crystal state [23,24].

Wormlike-chain model

Given the configuration of a typical copolymer as indi-
cated by the spatial coordinates R(s), a unit vector can
be define to represent the tangent direction of the curve,

u(s) =
dR(s)

ds
. (8)

The reduced bending Hamiltonian of a configuration can
be written as

βH =
m∑

j=1

λj

2

∫ sj

sj−1

ds

∣
∣
∣
∣
du(s)

ds

∣
∣
∣
∣

2

=
m∑

j=1

λj

2Nbj

∫ tj

tj−1

dt

∣
∣
∣
∣
du(t)

dt

∣
∣
∣
∣

2

. (9)

The combination λj/Nbj appears in this reduced form.
The entropic contribution to the free energy of such

a polymer in a mean field Wj(r,u) can be obtained
from the single-chain partition function Q, where Q =∫

drduq(r,u, 1)/4πV . Instead of integrating over the en-
tire phase space, an equivalent way to obtain Q is to
consider the Green’s function of the system. The reduced
Green’s function (often called propagator in polymer the-
ories) q(r,u, t) represents the probability of finding a poly-
mer portion with the starting end labeled t = 0 and the
terminal end labeled t. The terminal end, which is located
in the j-th block, is located at a spatial point specified
by r and points at a direction specified by the unit vector
u. As we deductively solve for the propagator by start-
ing from the first block and reaching block-j, we need to
solve [25,26]

∂

∂t
q(r,u, t)=

[
Nbj

2λj
∇2

u − Nbju · ∇r − Wj(r,u)
]

q(r,u, t),

(10)
which is subject to the initial condition q(r,u, t = 0) = 1.
Note that for block-j, a dimensionless flexibility parameter
can be defined as

αj ≡ Nbj

2λj
, (11)

shown in this equation as a combination. Due to the dis-
tinct ends for multi-block copolymers, complementary to
q(r,u, t) is the propagator q∗(r,u, t), now for a polymer
segment of length 1−t, with one terminal end labeled by t
and another t = 1. It represents the probability of finding
the t-terminal, which is at the spatial position specified

by r and points in a direction specified by the unit vector
−u. This propagator satisfies a similar equation

∂

∂t
q∗(r,u, t)=

[

−Nbj

2λj
∇2

u−Nbju·∇r+Wj(r,u)
]

q∗(r,u, t).

(12)
which is subject to the initial condition q∗(r,u, 1) = 1.

Free energy

Performing the Hubbard-Stratonovich transformation and
taking the saddle-point approximation [2], we arrive at a
reduced mean-field Helmholtz free energy per chain,

βF = − ln Q − 1
V

∫

drdu
m∑

j=1

Wj(r,u)φj(r,u) + βHint,

(13)
where Hint is the total interaction energy. At the level
of saddle-point approximation, the free-energy functional
needs to be minimized with respect to all involved func-
tions, to be stated below. In the most general case, the
interaction between two segments in the system has both
spatial and orientational dependencies. Within the sec-
ond virial-coefficient treatment, the interaction energy per
chain can be written as

βHint =
1
2

∫

drdr′dudu′
∑

i,j

Kij(r,u; r′,u′)

×φi(r′,u′)φj(r,u), (14)

where Kij is a kernel function that is specified in a par-
ticular model for species i and j.

The free energy, which is a functional of φj(r,u) and
Wj(r,u), must be minimized with respect to these func-
tions to close the self-consistency, required by the saddle-
point condition. The incompressibility condition, eq. (7),
is normally dealt with by the introduction of a Lagrange
multiplier at that stage and added to the minimized func-
tional.

MS and FH free energies

For an orientationally anisotropic system, which is our
mainly concern here, an orientational order-parameter
tensor for component j can be introduced as

Qj(r) =
3
2

∫

du
(

uu − I
3

)

φj(r,u), (15)

where I is a 3 × 3 second-rank unit tensor. The degree
of alignment of molecules can be measured by the largest
eigenvalue of the tensor Q. In a situation where segments
are perfectly aligned, this eigenvalue is equal to unity;
whereas in a situation where orientations of segments are
disordered, this eigenvalue vanishes. Note that the prefac-
tor (3/2) used in eq. (15) is consistent with the definition
of the so-called Q-tensor in a liquid crystal theory [27]; in
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some polymer references where wormlike-chains are mod-
eled, this prefactor was dropped [18,28–31].

As a phenomenological approach to deal with the ori-
entational ordering, the MS approximation amounts to
taking the orientational part of the mean field in the form

Wj(r,u) = W̄j(r) −
3
2
Mj(r) :

(

uu − I
3

)

, (16)

where Mj is a 3×3 second-rank tensor field which is conju-
gated to Qj . Without losing generality, the orientationally
averaged W̄j(r), which is a function of r only, is denoted
by Wj(r) below.

Thus, the free energy per chain is written as

βF = − ln Q − 1
V

∫

dr
m∑

j=1

[Wj(r)φj(r)

−Mj(r) : Qj(r)] + βHint

+
1
V

∫

drξ(r)

[
m∑

j=1

φj(r) − 1

]

, (17)

where ξ is the Lagrange multiplier which is imposed to
retain the incompressibility condition. At the same level
of the MS approximation for the orientational dependence
and the local FH interaction approximation, the interac-
tion energy is approximated by [32,33]

βHint =
1

2V

∑

i�=j

χijN

∫

drφi(r)φj(r)

− 1
3V

∑

i,j

μijN

∫

drQi(r) : Qj(r). (18)

Within this free energy, these are typical parameters and
expressions appearing in a SCFT formalism, regardless of
the statistics used to describe the nature of the copolymers
(Gaussian versus wormlike). Here, χij is the FH parame-
ter, and μij is the MS parameter for species i and j.

The free energy functional, eq. (17), needs to be mini-
mized with respect to all five types of fields, φj(r), Wj(r),
Qj(r), Mj(r), and ξ(r). This leads to

Wj(r) =
∑

i�=j

χijNφi(r) + ξ(r), (19)

φj(r) =
1

4πQ

∫

j

dudtq(r,u, t)q∗(r,u, t), (20)

Mj(r) =
2
3

m∑

i=1

μijNQi(r), (21)

Qj(r) =
1

4πQ

∫

j

dudt

[
3
2
uu − I

2

]

q(r,u, t)q∗(r,u, t),

(22)

and
m∑

j=1

φj(r) = 1. (23)

Equations (19)-(23), together with eqs. (10) and (12) form
a consistent set of equations in a typical SCFT formalism
within the MS approximation.

Independent parameters in the model

We now assess the number of independent parameters in
the current SCFT formalism that is established generally
for an m-block polymer melt.

1) Volume fractions. There are m volume fractions
fi(i = 1, . . . ,m). Because of the normalization in eq. (1),
in total the system has m−1 independent volume fractions
as parameters.

2) Flory-Huggins parameters. There are m(m − 1)/2
FH parameters, appearing in the formalism as combina-
tions χijN , where i �= j.

3) Flexibility constants. In total, there are m different
flexibility constants αj defined in eq. (11) and appearing
in eqs. (10) and (12). If we use L to reduce all length-
related variables, the other combination that appears in
these equations is Nbj/L. There are in total m − 1 inde-
pendent parameters of such type, with the consideration
of the normalization condition in (2).

4) Maier-Saupe parameters. Because the MS inter-
action is also defined for the same species, there are
m(m + 1)/2 MS parameters, appearing in the formalism
as combinations μijN .

In summary, a grand total of G = m2 + 3m − 2 in-
dependent parameters exist in a problem of multiblock
copolymers which has m distinct species of blocks. Next
we examine a few special cases.

Homopolymer liquid-crystal problem

In this single-component problem, m = 1 and G = 2,
one has a single MS parameter μN together with α =
Nb/2λ = L/2λ as another parameter. In refs. [34–36],
2λ is selected as the effective Kuhn length a as a basic
unit, hence the flexibility parameter becomes the degree
of polymerization L/a in the large L/a limit. In a re-
lated lyotropic liquid-crystal problem where the MS term
is replaced by the Onsager energy [37], the MS coeffi-
cient is replaced by the coefficient of the Onsager inter-
action [23,38,39]. The limits L/a � 1 and L/a � 1 corre-
spond to MS theories or Onsager theories for flexible and
rodlike chains. This is a two-parameter theory.

Conformationally symmetric AB diblock
copolymers

In this case m = 2. The conformation symmetry refers to
the case where bj , λj , and μjN are i-independent. Here is
another special case in which we can take α = Nb/2λ =
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L/a as an independent parameter. In an isotropic prob-
lem, μjN = 0, the relevant parameters are hence, f (of
the A-component for example), χN , and L/a. Thus we
have a three-parameter theory which can be contrasted
with SCFT of the same problem based on a Gaussian-
chain model, in which f and χN are the natural choice
of the parameters. The ratio L/a measures the semiflexi-
bility of the polymers, enters into a wormlike-chain model
naturally.

At a special case f = 0.5 (for the lamellar phase), the
physical properties such as the order-disorder transition,
the unit-cell size and the interfacial width were investi-
gated by using numerical techniques or the random-phase
approximation, in refs. [12, 15, 40]. The three-parameter
theory at any f is solved in refs. [16, 41] which explore
the three-dimensional morphologies formed in this sys-
tem. In refs. [15, 16, 40, 41], b is implicitly assumed to be
the same as a, the basic statistical measure, hence χN is
directly written as χL/a. This is unnecessary, as we can
keep using χN and the exactly same theoretical results
can emerge.

Accounting for the effects of the orientational interac-
tions between segments, in the case of μij = μ, Netz and
Schick focused on calculating the phase diagram of sym-
metric diblocks, f = 0.5 [29]. The general problem of ne-
matic diblock copolymers, however, is not systematically
solved yet. In this case it has four independent reduced
parameters f , χN , L/a, and μN .

Conformationally symmetric AB wormlike
polymer blends

A system that is closely related to the last one is the
demixing of AB homopolymers that form an interface be-
tween two immiscible (A- or B-rich) bulk phases. For a
conformationally symmetric case, we again have four ba-
sic reduced parameters, f , χN , L/a, and μN . This can
be contrasted with the Gaussian-chain problem which has
two basic reduced parameters f and χN ; Helfand’s an-
alytical solution to the compositionally symmetric case
(f = 1/2) is a classical milestone in polymer theory [42];
the significance of composition asymmetry (f �= 1/2) on
the interface profile in such a simple problem was explored
following that work, mostly by numerically methods, in
terms of f and χN .

Returning to the wormlike chains, a four-parameter
problem, we wish to point out that the theory is not com-
pletely solved, but will predict a number of interesting fea-
tures in liquid-crystal interface composed of two types of
molecules. This will help us to understand the interplay
between and the merging of polymer-demixing interface
and liquid-crystal interface. The reduced two-parameter
problem where f = 1/2 and μN = 0, was indeed ex-
amined in refs. [13, 14]; the effects of orientation-position
coupling in the vicinity of the AB polymer interface were
illustrated, even though there is no explicit orientation-
orientation interaction.

Rod-coil diblock copolymers, isotropic
phases

Here we have an extreme example of conformational-
asymmetric diblock copolymer problems (m = 2). Based
on the general analysis above, we need one volume frac-
tion parameter, f (of the A-component for example) and
one FH parameter χN . To stay in the isotropic-phase
regime, it is adequate to let μN = 0. The flexibility
αR = NbR/2λR on the rodlike (R) block now vanishes
because of the λR → ∞ limit. The other two remain-
ing parameters in the theory are the flexibility parameter
αC = NbC/2λC of the coil (C) block, which can be large
(true rod-coil case) and small (crossing over to rod-worm
case), and the ratio bC/bR (here NbRb is used to reduce
all spatial variables).

This theory, generally for rod-worm diblock copoly-
mers, contains four parameters, f , χN , and αC, and
bC/bR. A special case is pushing the formalism to the
asymptotic limit αC � 1 which is suitable for the ideal
rod-coil case, we can identify aC = 2λC on the C block
where aC is the Kuhn length of the coil block. Now, aC

can be used as the reference packing length bC, bC = aC,
then we simply have αC = N .

One can show that within the asymptotic αC � 1
limit, the two parameters αC and bC/bR show up as one
single combination b2

C/Nb2
R. The proof of this point can

be found in refs. [22] and [43]. Hence for an ideal isotropic
rod-coil problem we need to examine the phase space in
terms of three reduced parameters f , χN and b2

C/Nb2
R

using the current formalism.
On the other hand, the entire rod-coil problem can

be reformulated based on SCFT in which the coil block
is treated to follow the Gaussian-chain statistics. In such
an approach and with the further identification aC = bC,
a conformation parameter ν2 = b2

C/Nb2
R is used as an

independent parameter and one of the two, (Nb2
C)1/2 or

NbR, is used as a length-rescaling parameter [30, 44, 45].
The equivalence between the parameter set used in three-
parameter wormlike-chain SCFT and the set used in three-
parameter Gaussian-chain SCFT at the large N limit
is transparent here. Beyond the commonly found bcc,
lamellar, columnar, and gyroid states, a rod-coil sys-
tem can display the A15 state in a certain parameter
region. A systematic investigation of this problem, in
terms of f , χN , and ν2 (where N � 1) is presented in
ref. [22].

In the intermediate- and small-αC regime, the for-
malism is suitable for describing microphase separation
occurring in a copolymer melt composed of copolymers
that have rodlike and semiflexible-chain blocks (hence rod-
worm polymers). The structural properties based on the
four-parameter theory containing f , χN , αC, bC/bR (or
equivalently expressing the last parameter through ν2 to
retain the theoretical structure of a rod-coil problem) in
the intermediate- and small-αC regime have not been thor-
oughly explored yet.
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Rod-coil diblock copolymers, liquid-crystal
phases

To completely map out the entire phase diagram for the
rod-coil problem, in principle one needs to add three more
parameters, μRRN , μCCN , and μRCN . One can argue that
the most dominating one is μ = μRR because the rod
blocks can be liquid-crystal-like and ignore μCC and μRC.
This reduced version is most experimentally relevant.

A four-parameter theory based on the Gaussian-chain
model, where the four parameters are f , χN , ν, and μN ,
has been considered in many studies [30,45–47]. Life now
becomes more complicated. Mostly, because of the com-
plexity of the problem, a sub-regime of the phase space is
examined with a reduced dimensionality in spatial varia-
tion (with the exception of [47] which considers three di-
mensions). It has been demonstrated that the rod blocks
exclusively play a crucial role in the formation of liquid-
crystal domains of various spatial symmetries. Despite
of the efforts made to understand a sub-regime of the
phase space, a complete understanding based on the four-
parameter rod-worm formalism has not emerged yet but
is highly desirable.

Due to the advantageous functions in the mechanical
and photoelectric properties, semicrystalline block copoly-
mers have recently attracted intensive experimental inter-
est [48–52]. Extensions beyond a four-parameter liquid-
crystal rod-coil model to rod-worm, coil-worm, and worm-
worm copolymer models can be easily adopted within the
current SCFT formalism. Essential parameters are clearly
identifiable, as discussed above. To this end, even more
parameters need to be introduced and recent studies are
limited to, again, a sub parameter space [17–21]. Some liq-
uid crystalline structures with exotic orientational and po-
sitional symmetries have been discovered in these studies.

Branched polymers

The topological structure of a multiblock copolymer is an-
other key factor that determines the microphase-separated
structure of a melt composed of these polymers. In the
above we have not discussed this class of polymers, in
which star-branched (fig. 1(b)) and side-branched poly-
mers (fig. 1(c)) are good examples. In order to correctly
characterize the branched structures, one needs to utilize
a particular strategy [2] to solve eqs. (10) and (12) in anal-
ogy to the Feynman-Kac formula in the path-integral de-
scription of quantum mechanics [53]. It is worth emphasiz-
ing that the number of physical parameters is not affected
by the variation of chain topology.

Other parameters

There are other parameters that can significantly affect
the final melt structure, which can be included in the
aforementioned formalism. Among them, the angles at
which the different blocks are attached to each other,

labeled in fig. 1 by red circles, become important in a
wormlike-chain problem. These angles are determined by
the very chemical bonds that are used to connect differ-
ent blocks and are less important in a system made of
long, flexible polymers, as the angular dependencies are
expected to become uncorrelated in a coil-polymer prob-
lem. Here for short and rigid polymer wormlike blocks,
these angular effects can significantly change the entire
physical picture.

Segmental length, Kuhn length, the flexible
limit

We started by stating that two length scales, packing
length bj and persistence length λj , are required to de-
scribe the statistical physics of a semiflexible block j. In
the polymer literature, another length scale, the Kuhn
length aj , is often used for a flexible block j; the Kuhn
length appears in the Edwards model as the basic length
scale [1].

To clarify, let us now take the coil limit Lj � λj for
a polymer in no external field for a moment. Through
the classical derivation of Kratky and Porod [54] or the
correlation-function derivation of Saito et al. [11], we un-
derstand that

aj = 2λj (24)

can be established by an examination of the mean-square
end-to-end distance 〈R2

j 〉 for block j. Thus, one can use
2λj or aj interchangeably in the wormlike-chain formal-
ism, with the understanding that in the coil limit, 2λj

recovers the Kuhn length aj in a three-dimensional sys-
tem (however, care needs to be taken for other dimen-
sions [55]). No new length scale is introduced here. In poly-
mer statistics, and indeed in real systems, 〈R2

j 〉1/2 and Lj

are physical lengths and hence aj ≡ 〈R2
j 〉/Lj is uniquely

defined.
When a wormlike chain is in a weak orientational field

[Wj(r,u) ≈ Wj(r)], one can show that (10) reduces to

∂

∂t
q̄(r, t) =

[
Nbjaj

6
∇2

r − Wj(r)

]

q̄(r, t), (25)

for block j in the range [tj−1, tj ] where q̄(r, t) is the direc-
tionally averaged q(r,u; t). This equation can be indepen-
dently derived starting from the Edwards model, in which
aj is a Kuhn length and bj is a packing length.

Taking conformationally asymmetric, flexible diblock
copolymers for example, we can use the square root of one
of the two combinations (a1b1 and a2b2) as the length scale
to reduce r. As the result, the theory contains three pa-
rameters f, χN, a1b1/a2b2 within a Gaussian-chain theory
described by (25). One could, though, define Nj through
Lj/aj (hence a different N = N1 + N2) from the begin-
ning, using aj as the basic unit rather than bj ; this gives
rise to a coefficient a2

j for the ∇2-term (that is, bj disap-
pears from the above equation); now χN must be rewrit-
ten to take into account the difference between aj and
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Table 1. Basic melt-systems studied based on the wormlike-chain SCFT formalism. Research work that entirely uses a Gaussian-
chain approach is not listed here, although it may be highly applicable in many cases. The word “isotropic” refers to no
consideration of the directional ordering of segments. The phrase “conformationally symmetric” refers to identical conformational
properties of constituting blocks. Some open theoretical problems are also suggested.

System Varying parameters Specified parameters References

MS theory of the isotropic-nematic transition in
wormlike homo-polymers

α, μN [34–36]

Isotropic, conformationally and compositionally
symmetric AB wormlike polymer blends

α (large), χN f = 1/2, μN = 0 [13]

Nematic, conformationlly symmetric AB worm-
like polymer blends, in general

f , χN , α, μN [29]; open

Isotropic, conformationally and compositionally
symmetric AB wormlike diblock copolymers

χN , α f = 1/2, μN = 0 [12,15,40]

Isotropic, conformationally symmetric AB
wormlike diblock copolymers

f , χN , α μN = 0 [16,41]

Nematic, conformationally symmetric AB
wormlike diblock copolymers

f , χN , α, μN open

Isotropic, rod-coil copolymers f , χN , ν2 μN = 0 [22]

Nematic, rod-coil copolymers f , χN , ν2, μN open

Isotropic, rod-worm copolymers f , χN , α, ν2 μN = 0 open

Nematic, worm1-worm2 copolymers in general f , χN , α1, α2, ν2, μijN [17–21]; open

bj , such that N needs to be rescaled within the combina-
tion χN by reference to monomer volume densities [56].
Regardless of which set of parametrization to use, there
are only three combinations of parameters. Adopting the
notations in this paper, we can re-express the phase dia-
grams calculated by Vavasour and Whitmore [56], Matsen
and Schick [57], as well as Matsen and Bates [58], in terms
of f, χN, a1b1/a2b2 for a b1 �= b2 system, generally.

To study the properties of a multicomponent flexible
polymer melt composed of conformationally symmetric
blocks (aj = a and bj = b), in the literature it is customary
to directly take a as the packing length scale, b = a, which
is possible because only one packing length is needed. If
one insists on using b �= a, the only slight complication
is the definition of monomer size hence N , which in turn
has an effect on the definition of χ through the combina-
tion χN . Using b = a or b �= a, re-scaling can be trivially
done here.

Summary

The Flory-Huggins mixing free energy of a polymer melt
stems from the basic physical idea of packing different
species of monomers. The Maier-Saupe free energy is an-
other commonly used approximation to deal with the ori-
entational ordering in liquid-crystal systems. Using the
same concepts and considering the fact that melts formed
by wormlike chains are directionally dependent on per-
sistence lengths, we emphasize here the number of re-
duced parameters that need to be considered in a gen-
eral theory. Within the same theoretical framework, the
usefulness of this formalism in understanding basic poly-

mer systems is briefly reviewed by using a few examples:
isotropic-nematic liquid crystal transition, AB homopoly-
mer interface, and microstructures in AB diblock copoly-
mers as well as rod-coil copolymers. Some of the basic
systems are listed in table 1. We wish that this Perspec-
tive paves the way for further structural determinations of
other wormlike polymer mixtures, in which the polymer
semiflexibility is considered as a tuning parameter.

The SCFT approach is a general method that can
be used as a mean-field-level approximation for poly-
mer melts composed of polymers that can be either de-
scribed by Gaussian- or wormlike-chain statistics. We
devote this Perspective to showcase the versatility and
power of the wormlike-chain formalism, which can be re-
duced to a Gaussian-chain formalism in appropriate pa-
rameter regimes. The latter, although now asymptotically
limited to systems containing flexible chains, is mathe-
matically easier to handle as it only uses r as a vari-
able for spatially inhomogeneous systems. Solving the
above-listed wormlike-chain SCFT equations is obviously
more challenging mathematically, as now both r- and u-
dependencies are required. Many recent efforts have been
made to develop numerical approaches that can be ef-
ficiently used to tackle the differential equations in the
formalism. Recent developments in computational algo-
rithms for this area of research are reviewed in table I and
the corresponding text of ref. [41].

We thank for the financial supports from the National Natural
Science Foundation of China (Nos. 21474076 and 21574006)
and the Natural Sciences and Engineering Research Council
(Canada).
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