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Abstract. We consider Lagrangian velocity differences of zooplankters swimming in still water and in
turbulence. Using cumulants, we quantify the intermittency properties of their motion recorded using
three-dimensional particle tracking velocimetry. Copepods swimming in still water display an intermittent
behaviour characterized by a high probability of small velocity increments, and by stretched exponential
tails. Low values arise from their steady cruising behaviour while heavy tails result from frequent relocation
jumps. In turbulence, we show that at short time scales, the intermittency signature of active copepods
clearly differs from that of the underlying flow, and reflects the frequent relocation jumps displayed by these
small animals. Despite these differences, we show that copepods swimming in still and turbulent flow belong
to the same intermittency class that can be modelled by a log-stable model with non-analytical cumulant
generating function. Intermittency in swimming behaviour and relocation jumps may enable copepods to
display oriented, collective motion under strong hydrodynamic conditions and thus, may contribute to the
formation of zooplankton patches in energetic environments.

1 Introduction

Calanoid copepods dominate the zooplankton community
in marine and brackish environments. Due to their lim-
ited swimming abilities, these small planktonic organisms,
which are about one millimetre in size when adult, interact
generally very little with large features of the flow. Their
behaviour is most significant when described at spatial
scales that are on the order of a few centimetres or less,
and at temporal scales on the order of a second [1]. At
these small scales, behaviour allows copepods to capture
preys [2], find mates [3] and escape predators [4].

Many species of calanoid copepods move by alternat-
ing periods of slow swimming with frequent relocation
jumps. In filter-feeding copepods, the slow forward mo-
tion derives from the creation of feeding currents accom-
plished by the high-frequency vibration of the cephalic
appendages [5]. In ambush-feeding species, where feed-
ing and swimming are separate processes, copepods swim
slowly to search for mates or foraging opportunities. Re-
location jumps have been commonly observed in calanoid
copepods, regardless of their feeding strategy, and result
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in a sequence of small velocity bursts leading to an un-
steady motion that appears rather erratic [6,7]. Conse-
quently, the swimming behaviour of calanoid copepods in
calm water can be considered as a generally steady mo-
tion, interrupted by frequent bursting events that result
in comparatively high fluctuation levels for the velocity
differences.

For levels of fluid turbulence characteristic of oceanic
and estuarine habitats, small-scale flow velocity fluctua-
tions and copepod maximal velocities are roughly com-
parable. Recent laboratory measurements have demon-
strated the substantial contribution of active motion to
the swimming dynamics of copepods in turbulence. Liv-
ing animals swim faster and accelerate much stronger
than their dead counterparts, even at moderate intensities
of turbulence [8]. Conversely, turbulence cancels innate
movement strategies and gender-specific differences in the
degree of space occupation, two important behavioural
features that determine how copepods interact with other
organisms and how they explore their environment [9].
When motion strategies are not possible, vigorous swim-
ming amid flow motion may allow copepods to maintain
competitive advantage during interactions and thus, can
improve survival and reproduction in a challenging en-
vironment. Swimming velocities achieved during steady
propulsion in still water are low and do not contribute
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Table 1. Number of three-dimensional coordinates, number of trajectories and mean trajectory length (in frames) for the living
copepods and the inert carcasses.

Coordinates Trajectories Length ± s.d.

Inert Active Inert Active Inert Active

Calm water - 324 801 - 253 - 1 284 ± 581

Turbulence 1 168 685 1 289 810 2 256 2 601 518 ± 357 496 ± 340

significantly to motion in turbulence. Copepods approx-
imately drift with the flow unless executing a relocation
jump. These swift movements, which are clearly visible
even from visual observations [8], add up to the irregu-
lar nature of turbulent flows. In this study, we first test
for intermittency in the swimming behaviour of copepods
swimming freely in calm water. We then ask, using cope-
pods swimming in turbulence, whether the intermittency
signature of their self-induced motion amplifies that of the
underlying flow.

One of the characteristic feature of fully developed
turbulence is the intermittent nature of the velocity fluc-
tuations [10]. According to Kolmogorov’s scaling theory
(K41), the high-order moments 〈|δu(r)|p〉 of the Eulerian
spatial velocity differences δu(r) = u(x+ r)−u(x) should
scale as rζp with ζp = p/3 in the inertial range, where
the only relevant parameter is the energy flux ε. Simi-
larly, Lagrangian temporal velocity differences δu(τ) =
u(t + τ) − u(t), also known as the Lagrangian structure
functions, should scale as Dp(τ) = 〈|δu(τ)|p〉 ∼ (ετ)ζp

in the inertial range, with ζp = p/2. Experimental stud-
ies, however, have shown that both for Eulerian and La-
grangian quantities, the exponents ζp deviate strongly
from their expected values [11–13]. This deviation, and
the anomalous scaling of ζp are attributed to intermit-
tency that provides corrections to the K41 predictions.

The exponents ζp are usually estimated for the range
of scales where Dp(τ) displays a K41 scaling range with
ζ2 ≈ 1 for the Lagrangian framework. The exponents, and
their anomalous scaling, may also be more rigorously es-
timated via the extended self-similarity ansatz that re-
quires to plot the structure functions of different orders
against D2(τ) [13,14]. However, measurement of ζp has
limitations because of finite Reynolds number and limited
inertial range [15]. Such limitations affect measurements
conducted with the structure functions and with the ex-
tended self-similarity method. We therefore consider an-
other approach. Instead of studying the scale dependence
for each moment, we focus on the moment dependence
at a given scale, using cumulants. This method has been
successfully used in the scaling turbulence framework to
quantify the intermittency features of turbulent flows [16–
18] and here, we apply it to quantify intermittency in the
motion of zooplankters.

2 Methods

2.1 Presentation of the experimental data

We have carried out laboratory experiments to track the
motion of copepods swimming in turbulent flow [8]. The
experimental setup and methodology are described in

details in [8] and here, we briefly restate their main fea-
tures. We produced turbulence in the laboratory using
a setup that generates quasi-homogeneous and isotropic
turbulence via counter-rotating disks [19]. The disks are
40mm in diameter and smooth to prevent mechanical
damage to the animals. We conducted three-dimensional
Lagrangian particle tracking measurements using four
synchronized cameras recording a 100Hz. Measurements
were carried out within a 10 cm × 10 cm × 10 cm inves-
tigation volume centred in the middle of the aquarium
and mid-way between the rotating disks. We conveyed 100
male copepods into the experimental vessel and recorded
their behaviour for 5min in still water and for 5min un-
der background flow motion. We conducted experiments
twice. Because the mass density of calanoid copepods
(density of approximately 1.05 g cm−3) is slightly higher
than that of water [20], we conducted the same measure-
ments on dead copepods to account for the effect of parti-
cle size and density [21]. We calibrated the cameras using
images of a reference object with target points of known
coordinates and we performed an additional dynamic cal-
ibration based on the images of moving particles [22].
We established correspondences between particle image
coordinates and derived the three-dimensional positions
of the moving particles by forward intersection, introduc-
ing their coordinates as unknowns in the augmented pro-
jection model [23,24]. We processed the image sequences
and tracked living and dead copepods using an algorithm
based on image and object space information [25].

The number of trajectories and number of three-
dimensional coordinates are indicated in table 1. Tur-
bulence parameters are given in table 2. The intensity
of turbulence produced with our setup is comparable to
characteristic values observed in coastal zones, tidal fronts
and mega-tidal estuaries, three relatively energetic envi-
ronments inhabited by calanoid copepods, where ε can
reach 10−4 m2 s−3 [26,27]. With the low Rλ = 35 set
in our measurements, we measured a second-order struc-
ture function that is similar in shape to those obtained
at comparable [28] or very high Reynolds numbers [29]
(fig. 1). We also observed a Lagrangian Kolmogorov con-
stant C0 ≈ 2 that agrees well with results from direct
numerical simulations at Rλ = 43, where C0 ≈ 2.5 [28].
The initially sharper increase of the second-order structure
function for the case of living copepods is due to their
higher acceleration variance relative to that of the inert
carcasses (fig. 1). Measurements were conducted with an
ecologically representative species. We selected the estu-
arine calanoid copepod Eurytemora affinis because of its
large distribution area which includes most temperate es-
tuaries, its high importance in the trophic food web and
the prevalence of turbulence in its habitat.
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Table 2. Turbulence parameters for the flow condition. ε is
the turbulent energy dissipation rate. τη = (ν/ε)1/2 and η =
(ν3/ε)1/4 are the Kolmogorov time and length scales, respec-
tively. L is the integral length scale, estimated via the Eulerian
velocity autocorrelation function. T = L/u′

rms is the integral
time scale. Finally, Rλ is the Taylor Reynolds number.

ε (m2 s−3) τη (s) η (mm) T (s) L (mm) Rλ

5.3 × 10−5 0.13 0.4 0.8 6.2 35
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Fig. 1. Non-dimensionalised second-order structure function
for active copepods (blue) and inert carcasses (red) in turbu-
lent flow. The structure function displays a K41 scaling range
with ζ2 ≈ 1 in the inertial range i.e. from 2 to 6 Kolmogorov
time scales.

2.2 Analysis of velocity fluctuations using cumulants

We consider the variable δuτ where u is one component of
the velocity vector and τ is the time increment along the
trajectory of a particle. The moment generating function
of the generator gτ = log(|δuτ |) is defined for each τ by
Mg(q) = 〈egq〉. Its cumulant generating function is given
by Ψ(τ) = log(Mg(q)) = log(〈|δuτ |q〉) [30]. The function
Ψ(τ) is convex and, as a second characteristic function,
can be developed via power series expansion, for each time
increment τ , using the cumulants [31]

Ψ(q) = C1q +
1
2!

q2C2 +
1
3!

q3C3 + . . . =
+∞∑

p=1

Cp
qp

p!
, (1)

where Cp is the p-th cumulant. The first two cumulants are
C1 = 〈g〉 = 〈log(|δuτ |)〉 and C2 = 〈g2〉 − 〈g〉2 = 〈g2〉 − C2

1

and higher cumulants Cn are polynomial functions of
the moments 〈gp〉 (1 ≤ p ≤ n). The theorem of Mar-
cienkiewicz states that, if it exists, the development of
eq. (1) is either infinite, or if finite, of a degree no higher
than two [30]. In fact, the development of eq. (1) may not
exist if Ψ(q) is a non-analytic function. This occurs when
g is a stable process whose second-order moment (and
hence its second-order cumulant) diverges. Stable distri-
butions are sometimes referred to as Lévy-stable distri-
butions and correspond to a generalization of the Gaus-
sian law [32]. The main parameter is the index α bounded

between 0 and 2, the upper bound corresponding to the
normal distribution. Log-stable approximations for turbu-
lence intermittency correspond to a non-analytic scaling
moment function [33]. In this case, instead of eq. (1), we
have the relation [17]

Ψ(q) = C1q + Cαqα, (2)

where 0 ≤ α ≤ 2 is the index of the stable process and Cα

is the non-analytical cumulant. When α = 2 the generator
is a Gaussian process and the variable δuτ follows a log-
normal distribution. Because of non-analycity, there are
only two cumulants in the development of eq. (1). To check
the suitability of log-stable approximation for our analysis,
we consider the function

Φ(q) = Ψ(q) − C1q. (3)

For a stable law, Φ(q) should be proportional to qα.
Using trajectories of active and inert copepods, we esti-
mate the functions Φ(q) for moments up to 6 and for time
increments up to 10 s. Using a best fit, the slopes of the
straight lines after log-transformation give directly the val-
ues of the exponent α for all scales, and the y-intersects
of these linear trends give the values of Cα [17,18].

3 Results

We show in fig. 2 A the probability density function of the
velocity increment δuτ for copepods swimming in calm
water, at different values of τ . The swimming behaviour
is characterized by a large proportion of very small veloc-
ity increment values, and by stretched exponential tails.
The large proportion of small velocity differences derives
from the slow swimming behaviour of E. affinis; in calm
conditions, copepods most often cruise steadily through
the water. Relocation jumps explain the exponential tails.
Figure 2 B shows the probability density function of δuτ

for living copepods and inert carcasses in turbulence. The
parameterization curve of [34], used to fit the experimen-
tal data of particle acceleration at high Reynolds number,
is shown for comparison. This stretched exponential fit
follows our experimental data well. Surprisingly, we find
that velocity differences of living and inert particles in
turbulence collapse when normalized by their variance. A
similar shape at small velocity differences was not unex-
pected, because the turbulent transport dominates over
slow cruising speeds. However, also the tails of the prob-
ability density functions collapse rather well, which sug-
gests that relocation jumps and strong fluid acceleration
produce a similar intermittency.

As expected for second characteristic functions, the ex-
perimental curves of Ψ(q) are convex and converge rapidly
to a limit function as the separation time increases (fig. 3).
The fits obtained via eq. (2) agree well with empirical
data, especially for values of q < 5, except for active an-
imals in still water for which α and Cα have been esti-
mated with 0.75 ≤ q ≤ 6. We also show in fig. 3 the
function log(Φ(q)) vs. log(q) for different values of q and
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Fig. 2. Probability density functions of the normalized incre-
ments δuτ/〈δu2

τ 〉1/2 for different values of τ ranging from 0.01 s
to 4.5 s (from top to bottom; curves are vertically shifted) for
living copepods in still water (black) (A) and for living (blue)
and inert (red) copepods in turbulence (B). The stretched ex-
ponential fit presented in [34] and obtained with tracer par-
ticles at Rλ = 970 is indicated in (B) as a solid black line,
for comparison. Our experimental data agrees well with the
stretched exponential fit, despite a much lower Rλ.

for time increments ranging from 0.01 s to 1 s. The straight
lines obtained for a wide range of q confirm the validity
of our non-analytic framework, and agree with the log-
stable model. Using a best fit, the slope of these straight
lines are estimated for all scales, giving directly the expo-
nents α in eq. (2), and their y-intersect gives the values
of the non-analytical cumulant Cα(τ). Figure 4 A shows
the first cumulant C1 for living animals with and without
flow, and for inert animals with flow. For the turbulence
case, C1 is proportional to τ in the inertial range, which
has been estimated in our measurements between 2 and
6 Kolmogorov time scales (i.e. less than 1 s) (fig. 1). Dif-
ferences are clearly visible between active and inert cope-
pods in turbulence for separation times below 1 s. They
disappear at larger τ , suggesting that at large separation
times, flow motion is the main contributor to the intermit-
tency features of the motion. We show in fig. 4 B the non-
analytical cumulant Cα(τ). Here again, Cα(τ) is propor-
tional to τ in the inertial range, and differences are visible
between dead and living animals only at very short sepa-
ration times (up to 0.2 s), above which Cα(τ) reflects the

global dynamics of the flow. We quantify the uncertainty
of our estimation by computing Cα(τ) for different scaling
ranges: we find a mean standard deviation of 0.03 and 0.04
for living and inert copepods in turbulence, respectively,
and a mean standard deviation of 0.3 for living animals in
still water. Figure 4 C shows the exponent α. The values
are relatively independent of the scale, except for living
animals in still water at large separation times. Comput-
ing α for different scaling ranges gives a mean standard
deviation of 0.07 for living copepods in turbulence, 0.08
for inert carcasses in turbulence, and 0.6 for living cope-
pods in still water. The larger value observed for living
animals without turbulence suggests a larger departure
from the log-stable model, or that more data is needed
for the statistics to converge better. We can however es-
timate mean values: we find α = 1.62 ± 0.07 for living
animals in still water, α = 1.67 ± 0.02 for living animals
in turbulence and α = 1.66 ± 0.04 for inert copepods in
turbulence. These mean values are approximately compa-
rable between living and inert copepods in turbulence, and
also for living animals without flow. For the latter how-
ever, the slightly lower exponent may indicate a stronger
departure from Gaussian law. For active and inert cope-
pods in turbulence and unlike Cα(τ), the exponent α does
not vary substantially in the inertial range. For living an-
imals in still water, the variation of both α and Cα for
0.1 ≤ τ ≤ 2 points to the existence of two behaviours at
small and large separation times, with a transition region.
However, the uncertain behaviour of α for τ ≥ 3 suggests
that more data is needed to better characterize changes
in its statistical properties.

4 Discussion

We have considered here Lagrangian velocity measure-
ments on the motion of calanoid copepods in calm water
and in turbulent flow. By using cumulants, we precisely
characterized the contribution of each scale to velocity
fluctuations and thus, velocity intermittency at different
time scales. We first aimed at quantifying the intermit-
tency signature of living copepods swimming in still water.
We then assessed the relative contribution of self-induced
motion and advection due to flow to the intermittency
features of animals swimming in turbulence. The follow-
ing main points emerge from our analysis:

– Swimming zooplankton particles in still and turbulent
flow belong to the same intermittency class that can
be modelled by a log-stable model with non-analytical
cumulant generating function and with a characteristic
exponent α = 1.65 ± 0.15.

– The shape of the normalised probability density func-
tion of the velocity increment bears the same inter-
mittency signature for living and inert copepods in
turbulence. That is not to say, however, that cope-
pods behave as passive particles in turbulent flow.
The energy dissipation rate in our measurements (i.e.
5.3×10−5 m2s−3) is representative of moderate turbu-
lence in oceanic and estuarine environments. At this
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Fig. 3. The second characteristic function Ψ(q) vs. q for living copepods in still water (A), for living copepods in turbulence (B)
and for inert copepods in turbulence (C), for time increments logarithmically distributed between 0.01 s and 3 s (from bottom
to top). Dots indicate empirical values; continuous lines are obtained via eq. (2). log(Φ(q)) vs. log(q) for living copepods in still
water (D), for living copepods in turbulence (E) and for inert copepods in turbulence (F), for time increments logarithmically
distributed between 0.01 s and 3 s (from top to bottom; curves are vertically shifted for clarity). Black continuous lines show
experimental values, grey dashed lines correspond to straight lines with a slope of α.

intensity of turbulence, copepods can accelerate much
more strongly than the flow: we measured that dimen-
sional accelerations are stronger for living copepods
than for inert carcasses [8]. Only when velocity differ-
ences are normalized by their respective variance do
the probability density functions overlap.

– Differences between active animals and inert carcasses
in turbulent flow are clearly visible at short time
scales when considering the first cumulant C1(τ) and
the non-analytical cumulant Cα(τ). These differences

come from sharper accelerations due to rapid and fre-
quent relocation jumps. At longer time scales, the
intermittency signature of living copepods in turbu-
lence reflects that of the turbulent flow.

– Intermittency in flying or swimming small animals is
not well studied, despite its ecological importance. In
swarming midges, the probability density function of
the acceleration shows very heavy tails, and the spa-
tial structure of the acceleration —toward the centre
of the swarm— helps to keep the swarm intact [35]. In
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Fig. 4. The first cumulant C1 = 〈log(|δuτ |)〉 estimated at dif-
ferent values of the separation time τ for living animals swim-
ming in calm water (black), for living animals swimming in
turbulence (blue) and for inert copepods in turbulence (red)
(A). Values of the non-analytical cumulant Cα(τ) at different
values of τ . Because of differences in the scaling range between
flow and no-flow conditions, an inset shows Cα(τ) for the living
and inert copepods in turbulence, over a more suitable range
(B). Values of the exponent α estimated at different values of
τ (C). Panels (B) and (C) show the mean standard deviation
obtained by computing Cα(τ) and α(τ) for different scaling
ranges. The mean standard deviation is indicated for a limited
number of points only, for clarity.

copepods, intermittent behaviour is necessary to main-
tain swimming efficiency in turbulent flow [8], because
swift movements may help copepods to escape from
predators and find mates [36,37]. Eurytemora affinis
often dominates the estuarine zooplankton commu-
nity in the low salinity zone, despite very high dis-
sipation rates and currents with mean speed beyond

2m s−1 [38]. This species displays active vertical mi-
grations that allow the maintenance of its popula-
tion along the estuarine salinity gradient [39]. This
behaviour has been found to depend on swimming ca-
pabilities. Adults and late-stage copepodites migrate
to the bottom layer, both at ebb tide and during the
late rising tide, whereas nauplii are transported as pas-
sive particles in the turbidity maximum zone [40]. The
intermittent behaviour of adult copepods, and the ve-
locities achieved during relocation jumps, may explain
the ability of these small animals to display large-scale
directed motion in turbulent environments [41,42].

In conclusion, our approach based on cumulant scal-
ing provides a reliable alternative to methods based on
structure functions and extended self-similarity, since it
relates to statistical analysis at a given scale, whereas the
accurate determination of adequate intermittency mod-
els using structure functions is often constrained by the
imperfect scale-invariance of the statistics. The methods
is also useful for comparison between active and passive
particles. We have shown that the log-sable model ap-
plies very well, with a characteristic exponent valid for
all scales. These properties can be used for zooplankton
behaviour modelling, with useful ecological applications
such as plankton-turbulence coupling or feeding efficiency
of fish larvae.
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