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Abstract. The theory of hot nuclear fireballs consisting of all possible finite-size hadronic constituents in
chemical and thermal equilibrium is presented. As a complement of this hadronic gas phase characterized
by maximal temperature and energy density, the quark bag description of the hadronic fireball is consid-
ered. Preliminary calculations of temperatures and mean transverse momenta of particles emitted in high
multiplicity relativistic nuclear collisions together with some considerations on the observability of quark
matter are offered.

1 Overview

I wish to describe, as derived from known traits of
strong interactions, the likely thermodynamic properties
of hadronic matter in two different phases: the hadro-
nic gas consisting of strongly interacting but individual
baryons and mesons, and the dissolved phase of a rela-
tively weakly interacting quark-gluon plasma. The equa-
tions of state of the hadronic gas can be used to derive
the particle temperatures and mean transverse momenta
in relativistic heavy ion collisons, while those of the quark-
gluon plasma are more difficult to observe experimentally.
They may lead to recognizable effects for strange particle
yields. Clearly, the ultimate aim is to understand the be-
havior of hadronic matter in the region of the phase transi-
tion from gas to plasma and to find characteristic features
which will allow its experimental observation. More work
is still needed to reach this goal. This report is an ac-
count of my long and fruitful collaboration with R. Hage-
dorn [1].

The theoretical techniques required for the descrip-
tion of the two phases are quite different: in the case of
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hadronic gas, a strongly attractive interaction has to be
accounted for, which leads to the formation of the nu-
merous hadronic resonances —which are in fact bound
states of several (anti) quarks. If this is really the case,
then our intuition demands that at sufficiently high par-
ticle (baryon) density the individuality of such a bound
state will be lost. In relativistic physics in particular,
meson production at high temperatures might already
lead to such a transition at moderate baryon density.
As is currently believed, the quark-quark interaction is
of moderate strength, allowing a perturbative treatment
of the quark-gluon plasma as relativistic Fermi and Bose
gases. As this is a very well studied technique to be
found in several reviews [2–8], we shall present the rel-
evant results for the relativistic Fermi gas and restrict
the discussion to the interesting phenomenological con-
sequences. Thus the theoretical part of this report will
be devoted mainly to the strongly interacting phase of
hadronic gas. We will also describe some experimental
consequences for relativistic nuclear collisions such as par-
ticle temperatures, i.e., mean transverse momenta and en-
tropy.

As we will deal with relativistic particles throughout
this work, a suitable generalization of standard thermody-
namics is necessary, and we follow the way described by
Touschek [9]. Not only is it the most elegant, but it is also
by simple physical arguments the only physical generaliza-
tion of the concepts of thermodynamics to relativistic par-
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ticle kinematics. Our notation is such that � = c = k = 1.
The inverse temperature β and volume V are generalized
to become four-vectors:

E −→ pμ = (p0,p) = muμ, uμuμ = 1,

1
T

−→ βμ = (β0,β) =
1
T

vμ, vμvμ = 1,

V −→ V μ = (V 0,V ) = V wμ, wμwμ = 1, (1)

where uμ, vμ, and wμ are the four-velocities of the to-
tal mass, the thermometer, and the volume, respectively.
Usually, 〈uμ〉 = vμ = wμ.

We will often work in the frame in which all velocities
have a timelike component only. In that case we shall often
drop the Lorentz index μ, as we shall do for the arguments
V = Vμ, β = βμ of different functions.

The attentive reader may already be wondering how
the approach outlined here can be reconciled with the
concept of quark confinement. We will now therefore ex-
plain why the occurrence of the high temperature phase
of hadronic matter —the quark-gluon plasma— is still
consistent with our incapability to liberate quarks in
high energy collisions. It is thus important to realize
that the currently accepted theory of hadronic structure
and interactions, quantum chromodynamics [10], supple-
mented with its phenomenological extension, the MIT
bag model [11], allows the formation of large space do-
mains filled with (almost) free quarks. Such a state is ex-
pected to be unstable and to decay again into individual
hadrons, following its free expansion. The mechanism of
quark confinement requires that all quarks recombine to
form hadrons again. Thus the quark-gluon plasma may be
only a transitory form of hadronic matter formed under
special conditions and therefore quite difficult to detect
experimentally.

We will recall now the relevant postulates and re-
sults that characterize the current understanding of strong
interactions in quantum chromodynamics (QCD). The
most important postulate is that the proper vacuum state
in QCD is not the (trivial) perturbative state that we
(naively) imagine to exist everywhere and which is little
changed when the interactions are turned on/off. In QCD,
the true vacuum state is believed to a have a complicated
structure which originates in the glue (“photon”) sector of
the theory. The perturbative vacuum is an excited state
with an energy density B above the true vacuum. It is to
be found inside hadrons where perturbative quanta of the
theory, in particular quarks, can therefore exist. The oc-
currence of the true vacuum state is intimately connected
to the glue-glue interaction. Unlike QED, these massless
quanta of QCD, also carry a charge —color— that is re-
sponsible for the quark-quark interaction.

In the above discussion, the confinement of quarks is
a natural feature of the hypothetical structure of the true
vacuum. If it is, for example, a color superconductor, then
an isolated charge cannot occur. Another way to look at
this is to realize that a single colored object would, ac-
cording to Gauss’ theorem, have an electric field that can
only end on other color charges. In the region penetrated
by this field, the true vacuum is displaced, thus effectively

raising the mass of a quasi-isolated quark by the amount
BVfield.

Another feature of the true vacuum is that it exercises
a pressure on the surface of the region of the perturba-
tive vacuum to which quarks are confined. Indeed, this
is just the idea of the original MIT bag model [12]. The
Fermi pressure of almost massless light quarks is in equi-
librium with the vacuum pressure B. When many quarks
are combined to form a giant quark bag, then their prop-
erties inside can be obtained using standard methods of
many-body theory [2–8]. In particular, this also allows the
inclusion of the effect of internal excitation through a fi-
nite temperature and through a change in the chemical
composition.

A further effect that must be taken into consideration
is the quark-quark interaction. We shall use here the first
order contribution in the QCD running coupling constant
αs(q2) = g2/4π. However, as αs(q2) increases when the
average momentum exchanged between quarks decreases,
this approach will have only limited validity at relatively
low densities and/or temperatures. The collective screen-
ing effects in the plasma are of comparable order of mag-
nitude and should reduce the importance of perturbative
contributions as they seem to reduce the strength of the
quark-quark interaction.

From this general description of the hadronic plasma,
it is immediately apparent that, at a certain value of tem-
perature and baryon number density, the plasma must
disintegrate into individual hadrons. Clearly, to treat this
process and the ensuing further nucleonisation by pertur-
bative QCD methods is impossible. It is necessary to find
a semi-phenomenological method for the treatment of the
thermodynamic system consisting of a gas of quark bags.
The hadronic gas phase is characterized by those reac-
tions between individual hadrons that lead to the forma-
tion of new particles (quark bags) only. Thus one may
view [13–15] the hadronic gas phase as being an assembly
of many different hadronic resonances, their number in the
interval (m2,m2+dm2) being given by the mass spectrum
τ(m2, b)dm2. Here the baryon number b is the only dis-
crete quantum number to be considered at present. All
bag-bag interaction is contained in the mutual transmu-
tations from one state to another. Thus the gas phase has
the characteristic of an infinite component ideal gas phase
of extended objects. The quark bags having a finite size
force us to formulate the theory of an extended, though
otherwise ideal multicomponent gas.

It is a straightforward exercise, carried through in the
beginning of the next section, to reduce the grand par-
tition function Z to an expression in terms of the mass
spectrum τ(m2, b). In principle, an experimental form of
τ(m2, b) could then be used as an input. However, the
more natural way is to introduce the statistical bootstrap
model [13], which will provide us with a theoretical τ that
is consistent with assumptions and approximations made
in determining Z.

In the statistical bootstrap, the essential step consists
in the realization that a composite state of many quark
bags is in itself an “elementary” bag [1, 16]. This leads
directly to a nonlinear integral equation for τ . The ideas
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of the statistical bootstrap have found a very successful
application in the description of hadronic reactions [17]
over the past decade. The present work is an extension [1,
15, 18] and application [19] of this method to the case of
a system containing any number of finite size hadronic
clusters with their baryon numbers adding up to some
fixed number. Among the most successful predictions of
the statistical bootstrap, we record here the derivation
of the limiting hadronic temperature and the exponential
growth of the mass spectrum.

We see that the theoretical description of the two
hadronic phases —the individual hadron gas and the
quark-gluon plasma— is consistent with observations and
with the present knowledge of elementary particles. What
remains is the study of the possible phase transition be-
tween those phases as well as its observation. Unfortu-
nately, we can argue that in the study of temperatures and
mean transverse momenta of pions and nucleons produced
in nuclear collisions, practically all information about the
hot and dense phase of the collision is lost, as most of
the emitted particles originate in the cooler and more di-
lute hadronic gas phase of matter. In order to obtain re-
liable information on quark matter, we must presumably
perform more specific experiments. We will briefly point
out that the presence of numerous s quarks in the quark
plasma suggest, as a characteristic experiment, the obser-
vation Λ hyperons.

We close this report by showing that, in nuclear colli-
sions, unlike pp reactions, we can use equilibrium thermo-
dynamics in a large volume to compute the yield of strange
and antistrange particles. The latter, e.g., Λ, might be sig-
nificantly different from what one expects in pp collisions
and give a hint about the properties of the quark-gluon
phase.

2 Thermodynamics of the gas phase and the
SBM

Given the grand partition function Z(β, V, λ) of a many-
body system, all thermodynamic quantities can be deter-
mined by differentiation of lnZ with respect to its argu-
ments. Here, λ is the fugacity introduced to conserve a
discrete quantum number, here the baryon number. The
conservation of strangeness can be carried through in a
similar fashion leading then to a further argument λs of
Z. Whenever necessary, we will consider Z to be implicitly
dependent on λs.

The grand partition function is a Laplace transform of
the level density σ(p, V, b), where pμ is the four-momentum
and b the baryon number of the many-body system en-
closed in the volume V

Z(β, V, λ) =
∞∑

b=−∞
λb

∫
σ(p, V, b)e−βμpμ

d4p. (2)

We recognize the usual relations for the thermodynamic
expectation values of the baryon number

〈b〉 = λ
∂

∂λ
ln Z(β, V, λ), (3a)

and the energy–momentum four-vector

〈pμ〉 = − ∂

∂βμ
ln Z(β, V, λ), (3b)

which follow from the definition in eq. (2).
The theoretical problem is to determine σ(p, V, b) in

terms of known quantities. Let us suppose that the phys-
ical states of the hadronic gas phase can be considered as
being built up from an arbitrary number of massive ob-
jects, henceforth called clusters, characterized by a mass
spectrum τ(m2, b), where τ(m2, b)dm2 is the number of
different elementary objects (existing in nature) in the
mass interval (m2,m2 + dm2) and having the baryon
number b. As particle creation must be permitted, the
number N of constituents is arbitrary, but constrained
by four-momentum conservation and baryon conservation.
Neglecting quantum statistics (it can be shown that, for
T � 40MeV, Boltzmann statistics is sufficient), we have

σ(p, V, b) =
∞∑

N=0

1
N !

∫
δ4

(
p −

N∑

i=1

pi

)

×
∑

{bi}
δk

(
b −

N∑

i=1

bi

)

×
N∏

i=1

2Δμpμ
i

(2π)3
τ(p2

i , bi)d4pi. (4)

The sum over all allowed partitions of b into different bi

is included and Δ is the volume available for the motion
of the constituents, which differs from V if the different
clusters carry their proper volume Vci

Δμ = V μ −
N∑

i=1

V μ
ci . (5)

The phase space volume used in eq. (4) is best explained
by considering what happens for one particle of mass m0

in the rest frame of Δμ and βμ

∫
d4pi

2Δμpμ
i

(2π)3
e−β·pδ0(p2

i −m2)=Δ0

∫
d3pi

(2π)3
e−β0

√
p2+m2

= Δ0
Tm2

2π2
K2(m/T ). (6)

The density of states in eq. (4) implies that the creation
and absorption of particles in kinetic and chemical equi-
librium is limited only by four-momentum and baryon
number conservation. These processes represent the strong
hadronic interactions which are dominated by particle pro-
ductions. τ(m2, b) contains all participating elementary
particles and their resonances. Some remaining interac-
tion is here neglected or, as we do not use the complete
experimental τ , it may be considered as being taken care of
by a suitable choice of τ . The short-range repulsive forces
are taken into account by the introduction of the proper
volume V of hadronic clusters.
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One more remark concerning the available volume Δ
is in order here. If V were considered to be given and an
independent thermodynamic quantity, then in eq. (4), a
further built-in restriction limits the sum over N to a cer-
tain Nmax, such that the available volume Δ in eq. (5) re-
mains positive. However, this more conventional assump-
tion of V as the independent variable would significantly
obscure our mathematical formalism. It is important to re-
alize that we are free to select the available volume Δ as
the independent thermodynamic variable and to consider
V as a thermodynamic expectation value to be computed
from eq. (5)

V μ −→ 〈V μ〉 = Δμ + 〈V μ
c (β,Δ, λ)〉. (7)

Here 〈V μ
c 〉 is the average sum of proper volumes of all

hadronic clusters contained in the system considered. As
already discussed, the standard quark bag leads to the
proportionality between the cluster volume and hadron
mass. Similar arguments within the bootstrap model [15],
as for example discussed in the preceding lecture by R.
Hagedorn [16], also lead to

〈V μ
c 〉 =

〈
pμ(β,Δ, λ)

〉

4B , (8)

where 4B is the (at this point arbitrary) energy density of
isolated hadrons in the quark bag model [11].

Since our hadrons are under pressure from neighbors
in hadronic matter, we have in principle to take instead of
4B the energy density of a quark bag exposed to a pressure
P (see eq. (54) below)

εbag = 4B + 3P.

Combining eqs. (7)–(9), we find, with ε(β,Δ, λ) = 〈pμ〉/
〈V μ〉 = 〈E〉/〈V 〉, that

Δ

〈V (β,Δ, λ)〉 = 1 − ε(β,Δ, λ)
4B + 3P (β,Δ, λ)

. (9)

As we shall see, the pressure P in the hadronic matter
never rises above � 0.4B, see fig. 5a below, and arguments
following eq. (60). Consequently, the inclusion of P above
—the compression of free hadrons by the hadronic matter
by about 10%— may be omitted for now from further
discussion. However, we note that both ε and P will be
computed as ln Z becomes available, whence eq. (9) is an
implicit equation for Δ/〈V 〉.

It is important to record that the expression in eq. (9)
can approach zero only when the energy density of the
hadronic gas approaches that of matter consisting of one
big quark bag: ε → 4B, P → 0. Thus the density of states
in eq. (4), together with the choice of Δ as a thermody-
namic variable, is a consistent physical choice only up to
this point. Beyond we assume that a description in terms
of interacting quarks and gluons is the proper physical de-
scription. Bearing all these remarks in mind, we now con-
sider the available volume Δ as a thermodynamic variable
which by definition is positive. Inspecting eq. (4) again, we
recognize that the level density of the extended objects in

volume 〈V 〉 can be interpreted for the time being as the
level density of point particles in a fictitious volume Δ

σ(p, V, b) = σpt(p,Δ, b), (10)

whence this is also true for the grand canonical partition
function in eq. (2)

Z(β, V, λ) = Zpt(β,Δ, λ). (11)

Combining eqs. (2) and (4), we also find the important
relation

ln Zpt(β,Δ, λ) =
∞∑

b=−∞
λb

∫
2Δμpμ

(2π)3
τ(p2, b)e−βμpμ

d4p.

(12)
This result can only be derived when the sum over N in
eq. (4) extends to infinity, thus as long as Δ/〈V 〉 in eq. (9)
remains positive.

In order to continue with our description of hadronic
matter, we must now determine a suitable mass spectrum
τ to be inserted into eq. (4). For this we now introduce
the statistical bootstrap model. The basic idea is rather
old, but has undergone some development more recently
making it clearer, more consistent, and perhaps more con-
vincing. The details may be found in [15] and the refer-
ences therein. Here a simplified naive presentation is given.
We note, however, that our present interpretation is non-
trivially different from that in [15].

The basic postulate of statistical bootstrap is that the
mass spectrum τ(m2, b) containing all the “particles”, i.e.,
elementary, bound states, and resonances (clusters), is
generated by the same interactions which we see at work
if we consider our thermodynamical system. Therefore, if
we were to compress this system until it reaches its natural
volume Vc(m, b), then it would itself be almost a cluster
appearing in the mass spectrum τ(m2, b). Since σ(p,Δ, b)
and τ(p2, b) are both densities of states (with respect to
the different parameters d4p and dm2), we postulate that

σ(p,Δ, b)
∣∣∣∣
〈V 〉 −→

Δ→0
Vc(m,b)

=̂ const × τ(p2, b), (13)

where =̂ means “corresponds to” (in some way to be spec-
ified). As σ(p,Δ, b) is (see eq. (4)) the sum over N of N -
fold convolutions of τ , the above “bootstrap postulate”
will yield a highly nonlinear integral equation for τ .

The bootstrap postulate (13) requires that τ should
obey the equation resulting from replacing σ in eq. (4)
by some expression containing τ linearly and by taking
into account the volume condition expressed in eqs. (7)
and (8).

We cannot simply put V = Vc and Δ = 0, because
now, when each cluster carries its own dynamically deter-
mined volume, Δ loses its original meaning and must be
redefined more precisely. Therefore, in eq. (4), we tenta-
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tively replace

σ(p, Vc, b) −→
2Vc(m, b) · p

(2π)3
τ(p2, b)

=
2m2

(2π)34B τ(p2, b),

2Δ · pi

(2π)3
τ(p2

i , bi) −→
2Vc(mi, bi) · pi

(2π)3
τ(p2

i , bi)

=
2m2

i

(2π)34B τ(p2
i , bi). (14)

Next we argue that the explicit factors m2 and m2
i arise

from the dynamics and therefore must be absorbed into
τ(p2

i , bi) as dimensionless factors1 m2
i /m2

0. Thus,

σ(p, Vc, b) −→
2m2

0

(2π)34B τ(p2, b) = Hτ(p2, b),

2Δ · pi

(2π)3
τ(p2

i , bi) −→
2m2

0

(2π)34B τ(p2
i , bi) = Hτ(p2

i , bi), (15)

with

H :=
2m2

0

(2π)34B ,

where either H or m0 may be taken as a new free pa-
rameter of the model, to be fixed later. (If m0 is taken,
then it should be of the order of the “elementary masses”
appearing in the system, e.g., somwhere between mπ and
mN in a model using pions and nucleons as elementary
input.) Finally, if clusters consist of clusters which consist
of clusters, and so on, this should end at some “elemen-
tary” particles (where what we consider as elementary is
fixed by convention). Inserting eq. (15) into eq. (4), the
bootstrap equation (BE) then reads

Hτ(p2, b) = Hgbδ0(p2 − m2
b)

+
∞∑

N=2

1
N !

∫
δ4

(
p −

N∑

i=1

pi

)

×
∑

{bi}
δk

(
b −

N∑

i=1

bi

)

×
N∏

i=1

Hτ(p2
i , bi)d4pi. (16)

Clearly, the bootstrap equation (16) has not been derived.
We have made it more or less plausible and state it as a
postulate. For more motivation, see [15]. In other words,
the bootstrap equation means that the cluster with mass√

p2 and baryon number b is either elementary (mass mb,
spin isospin multiplicity gb), or it is composed of any num-
ber N ≥ 2 of subclusters having the same internal com-
posite structure described by this equation. The bar over
mb indicates that one has to take the mass which the “el-
ementary particle” will have effectively when present in a

1 Here is the essential difference with [15], where another
choice was made.

large cluster, e.g., in nuclear matter, m = m−〈Ebind〉, and
mN ≈ 925MeV. That this must be so becomes obvious if
one imagines eq. (16) solved by iteration (the iteration so-
lution exists and is the physical solution). Then Hτ(p2, b)
becomes in the end a complicated function of p2, b, all
mb, and all gb. In other words, in the end a single clus-
ter consists of the “elementary particles”. As these are all
bound into the cluster, their mass m should be the effec-
tive mass, not the free mass m. This way we may include
a small correction for the long-range attractive meson ex-
change by choosing mN = m − 15MeV.

Let us make a brief excursion to the bag model at this
point. There the mass of a hadron is computed from the
assumption of an isolated particle (= bag) with its size
and mass being determined from the equilibrium between
the vacuum pressure B and the internal Fermi pressure of
the (valence) quarks. In a hadron gas, this is not true as
a finite pressure is exerted on hadrons in matter. After a
short calculation, we find the pressure dependence of the
bag model hadronic mass

M(P )
M(0)

=
1 + 3P/4B

(1 + P/B)3/4
=

[
1 +

3
32

(
P

B

)2

+ · · ·
]

. (17)

We have already noted that the pressure never exceeds
0.4B in the hadronic gas phase, see fig. 5a below, and ar-
guments following eq. (60). Hence we see that the increase
in mass of constituents (quark bags) in the hadronic gas
never exceeds 1.5% and is at most comparable with the
15MeV binding in m. In general, P is about 0.1B and the
pressure effect may be neglected.

Thus we can consider the “input” first term in eq. (16)
as being fixed by pions, nucleons, and whenever necessary
by the usual strange members of meson and baryon mul-
tiplets. Furthermore, we note that the bootstrap equa-
tion (16) makes use of practically all the same approxi-
mations as our description of the level density in eq. (4).
Thus the solution of eq. (16) is particularly suitable for
our use.

We solve the BE by the same double Laplace transfor-
mation which we used before eq. (2). We define

ϕ(β, λ) :=
∫

e−βμpμ
∞∑

b=−∞
λbHgbδ0(p2 − m2

b)d
4p

= 2πHT
∞∑

b=−∞
λbgbmbK1(mb/T ),

Φ(β, λ) :=
∫

e−βμpμ
∞∑

b=−∞
λbHτ(p2, b)d4p. (18)

Once the set of input particles {mb, gb} is given, ϕ(β, λ)
is a known function, while Φ(β, λ) is unknown. Applying
the double Laplace transformation to the BE, we obtain

Φ(β, λ) = ϕ(β, λ) + expΦ(β, λ) − Φ(β, λ) − 1. (19)

This implicit equation for Φ in terms of ϕ can be solved
without regard for the actual β, λ dependence. Writing

G(ϕ) := Φ(β, λ), ϕ = 2G − eG + 1, (20)
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Fig. 1. Bootstrap function G(ϕ). The dashed line repre-
sents the unphysical branch. The root singularity is at ϕ0 =
ln(4/e) = 0.3863.

we can draw the curve ϕ(G) and then invert it graphi-
cally (see fig. 1) to obtain G(ϕ) = Φ(β, λ). G(ϕ) has a
square root singularity at ϕ = ϕ0 = ln(4/e) = 0.3863. Be-
yond this value, G(ϕ) becomes complex. Apart from this
graphical solution, other forms of solution are known:

G(ϕ) =
∞∑

n=1

snϕn =
∞∑

n=0

wn(ϕ0 − ϕ)n/2 = integral
representation.

(21)
The expansion in terms of (ϕ0−ϕ)n/2 has been used in our
numerical work (12 terms yield a solution within computer
accuracy) and the integral representation will be published
elsewhere2. Henceforth, we consider Φ(β, λ) = G(ϕ) to be
a known function of ϕ(β, λ). Consequently, τ(m2, b) is also
in principle known. From the singularity at ϕ = ϕ0, it fol-
lows [1] that τ(m2, b) grows, for m 	 mNb, exponentially
∼ m−3 exp(m/T0). In some weaker form, this has been
known for a long time [13,20,21].

3 The hot hadronic gas

The definition of Φ(β, λ) in eq. (18) in terms of the mass
spectrum allows us to write a very simple expression for
ln Z in the gas phase (passing now to the rest frame of the
gas)

ln Z(β, V, λ) = ln Zpt(β,Δ, λ) = − 2Δ

(2π)3H
∂

∂β
Φ(β, λ).

(22)
We recall that eqs. (9) and (19) define (implicitly) the
quantities Δ and Φ in terms of the physical variables V ,
β, and λ.

2 Extensive discussion of the analytical properties of the
bootstrap function was publisched in: R. Hagedorn and J.
Rafelski: Analytic Structure and Explicit Solution of an Impor-
tant Implicit Equation, Commun. Math. Phys. 83, 563 (1982).

Let us now introduce the energy density εpt of the
hypothetical pointlike particles as

εpt(β, λ) = − ∂

Δ∂β
ln Zpt(β,Δ, λ) =

2
(2π)3H

∂2

∂β2
Φ(β, λ),

(23)
which will turn out to be quite helpful as it is independent
of Δ. The proper energy density is

ε(β, λ) =
1

〈V 〉

(
− ∂

∂β
ln Z

)
=

Δ

〈V 〉εpt, (24)

while the pressure follows from

P (β, λ)〈V 〉 = T ln Z(β, V, λ) = T ln Zpt(β,Δ, λ), (25)

P (β, λ) =
Δ

〈V 〉

[
− 2T

(2π)3H
∂

∂β
Φ(β, λ)

]
=:

Δ

〈V 〉Ppt. (26)

Similarly, for the baryon number density, we find

ν(β, λ) =
〈b〉
〈V 〉 =:

Δ

〈V 〉νpt(β, λ), (27)

with

νpt(β, λ) =
1
Δ

λ
∂

∂λ
ln Zpt = − 2

(2π)3H
λ

∂

∂λ

∂

∂β
Φ(β, λ).

(28)
From eqs. (23)–(23), the crucial role played by the fac-
tor Δ/〈V 〉 becomes apparent. We note that it is quite
straightforward to insert eqs. (24) and (25) into eq. (9) and
solve the resulting quadratic equation to obtain Δ/〈V 〉 as
an explicit function of εpt and Ppt. First we record the
limit P � B

Δ

〈V 〉 = 1 − ε(β, λ)
4B =

[
1 +

εpt(β, λ)
4B

]−1

, (29)

while the correct expression is

Δ

〈V 〉 =
1
2
− εpt

6Ppt
− 2B

3Ppt
+

√
4B

3Ppt
+

(
1
2
− εpt

6Ppt
− 2B

3Ppt

)2

.

(30)
The last of the important thermodynamic quantities is the
entropy S. By differentiating eq. (25), we find

∂

∂β
ln Z =

∂

∂β
βP 〈V 〉 = P 〈V 〉 − T

∂

∂T
(P 〈V 〉). (31)

Considering Z as a function of the chemical potential, viz.,

Z(β, V, λ) = Z(β, V, eμβ) = Z̃(β, V, μ) = Z̃pt(β,Δ, μ) ,
(32)

we find

∂

∂β
ln Z

∣∣∣∣
μ,Δ

=
∂

∂β
ln Z̃pt(β,Δ, μ) = −E + μ〈b〉, (33)

with E being the total energy. From eqs. (31) and (33),
we find the “first law” of thermodynamics to be

E = −P 〈V 〉 + T
∂

∂T
(P 〈V 〉) + μ〈b〉. (34a)
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Now quite generally

E = −P 〈V 〉 + TS + μ〈b〉, (34b)

so that

S =
∂

∂T
[P (β,Δ, μ)〈V (β,Δ, μ)〉]

∣∣∣
μ,Δ

. (35)

Equations (25) and (33) now allow us to write

S =
∂

∂T
(P 〈V 〉) = ln Z̃pt(T,Δ, μ) +

E − μb

T
. (36)

The entropy density in terms of the already defined quan-
tities is therefore

S =
S

〈V 〉 =
P + ε − μν

T
. (37)

We shall now take a brief look at the quantities P , ε, ν,
Δ/〈V 〉. They can be written in terms of ∂Φ(β, λ)/∂β and
its derivatives. We note that (see eq. (20))

∂

∂β
Φ(β, λ) =

∂G(ϕ)
∂ϕ

∂ϕ

∂β
, (38)

and that ∂G/∂ϕ ∼ (ϕ0−ϕ)−1/2 near to ϕ = ϕ0 = ln(4/e)
(see fig. 1). Hence at ϕ = ϕ0, we find a singularity in the
point particle quantities εpt, νpt, and Ppt. This implies
that all hadrons have coalesced into one large cluster. In-
deed, from eqs. (24), (26), (27), and (29), we find

ε −→ 4B,

P −→ 0,

Δ/〈V 〉 −→ 0. (39)

We can easily verify that this is correct by establishing
the average number of clusters present in the hadronic
gas. This is done by introducing an artificial fugacity ξN

in eq. (4) in the sum over N , where N is the number of
clusters. Denoting by Z(ξ) the associated grand canonical
partition functions in eq. (22), we find

〈N〉 = ξ
∂

∂ξ
ln Zξ

pt(β,Δ, λ; ξ)
∣∣∣∣
ξ=1

= − 2Δ

(2π)3H
∂

∂β
Φ(β, λ),

(40)
which leads to the useful relation

P 〈V 〉 = 〈N〉T. (41)

Thus as P 〈V 〉 → 0, so must 〈N〉, the number of clus-
ters, for finite T . We record the astonishing fact that the
hadron gas phase obeys an “ideal” gas equation, although
of course 〈N〉 is not constant as for a real ideal gas but a
function of the thermodynamic variables.

The boundary given by

ϕ(β, λ) = ϕ0 = ln(4/e) (42)

thus defines a critical curve in the β, λ plane. Its position
depends, of course, on the actually given form of ϕ(β, λ),

Fig. 2. The critical curve corresponding to ϕ(T, μ) = ϕ0 in
the μ, T plane. Beyond it, the usual hadronic world ceases to
exist. In the shaded region, our theory is not valid, because we
neglected Bose-Einstein and Fermi-Dirac statistics.

i.e., on the set of “input” particles {mb, gb} assumed and
the value of the constant H in eq. (15). In the case of
three elementary pions π+, π0, and π− and four elemen-
tary nucleons (spin ⊗ isospin) and four antinucleons, we
have from eq. (18)

ϕ(β, λ) = 2πHT

[
3mπK1(mπ/T )

+ 4
(

λ +
1
λ

)
mNK1(mN/T )

]
, (43a)

and the condition (42), written in terms of T and μ =
T ln λ, yields the curve shown in fig. 2, i.e., the “criti-
cal curve”. For μ = 0, the curve ends at T = T0, where
T0, the “limiting temperature of hadronic matter”, is the
same as that appearing in the mass spectrum [13,15,20,21]
τ(m2, b) ∼ m−3 exp(m/T0) (for b 	 bmN).

The value of the constant H in eq. (15) has been cho-
sen [19] to yield T0 = 190MeV. This apparently large
value of T0 seemed necessary to yield a maximal average
decay temperature of the order of 145MeV, as required
by [22]. (However, a new value of the bag constant then
induces a change [1] to a lower value of T0 = 180MeV.)
Here we use

H = 0.724GeV−2, T0 = 0.19GeV,

m0 = 0.398GeV (when B = (145MeV)4),
(43b)

where the value of m0 lies as expected between mπ and
mN ((mπmN)1/2 = 0.36GeV).

The critical curve limits the hadron gas phase. By
approaching it, all hadrons dissolve into a giant cluster,
which is not in our opinion a hadron solid [23]. We would
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prefer to identify it with a quark-gluon plasma. Indeed,
as the energy density along the critical curve is constant
(= 4B), the critical curve can be attained and, if the
energy density becomes > 4B, we enter into a region
which cannot be described without making assumptions
about the inner structure and dynamics of the “elemen-
tary particles” {mb, gb} —here pions and nucleons— en-
tering into the input function ϕ(β, λ). Considering pions
and nucleons as quark-gluon bags leads naturally to this
interpretation.

4 The quark-gluon phase

We now turn to the discussion of the region of the strongly
interacting matter in which the energy density would be
equal to or higher than 4B. As a basic postulate, we will
assume that it consists of —relatively weakly— interact-
ing quarks. To begin with, only u and d flavors will be
considered as they can easily be copiously produced at
T � 50MeV. Again the aim is to derive the grand par-
tition function Z. This is a standard exercise. For the
massless quark Fermi gas up to first order in the inter-
action [1–8,18], the result is

lnZq(β, λ) =
8V

6π2β3

[(
1 − 2αs

π

)(
1
4

ln4 λq +
π2

2
ln2 λq

)

+
(

1 − 50
21

αs

π

)
7π4

60

]
, (44)

valid in the limit mq < T ln λq.
Here g = (2s+1)(2I +1)C = 12 counts the number of

the components of the quark gas, and λq is the fugacity
related to the quark number. As each quark has baryon
number 1/3, we find

λ3
q = λ = eμ/T , (45)

where as before λ allows for conservation of the baryon
number. Consequently

3μq = μ. (46)

The glue contribution is

ln Zg(β, λ) = V
8π2

45
β−3

(
1 − 15

4
αs

π

)
. (47)

We notice the two relevant differences with the photon
gas:

– The occurrence of the factor eight associated with the
number of gluons.

– The glue-glue interaction as gluons carry color charge.

Finally, let us introduce the vacuum term, which ac-
counts for the fact that the perturbative vacuum is an
excited state of the “true” vacuum which has been renor-
malized to have a vanishing thermodynamic potential,
Ω = −β−1 ln Z. Hence in the perturbative vacuum

ln Zvac = −βBV. (48)

This leads to the required positive energy density B within
the volume occupied by the colored quarks and gluons and
to a negative pressure on the surface of this region. At this
stage, this term is entirely phenomenological, as discussed
above. The equations of state for the quark-gluon plasma
are easily obtained by differentiating

ln Z = lnZq + lnZg + lnZvac (49)

with respect to β, λ, and V . The baryon number density,
energy, and pressure are, respectively

ν =
1
V

λ
∂

∂λ
ln Z =

2T 3

π2

(
1 − 2αs

π

)

×
(

1
34

ln3 λ +
π2

9
ln λ

)
, (50)

ε = − 1
V

∂

∂β
ln Z = B

+
6
π2

T 4

[(
1 − 2αs

π

)(
1

4 · 34
ln4 λ +

π2

2 · 32
ln2 λ

)

+
(

1 − 50
21

αs

π

)
7π4

60

]
+

8π2

15
T 4

(
1 − 15

4
αs

π

)
, (51)

P = T
∂

∂V
ln Z = −B

+
2T 4

π2

[(
1 − 2αs

π

)(
1

4 · 34
ln4 λ +

π2

2 · 32
ln2 λ

)

+
(

1 − 50
21

αs

π

)
7π4

60

]
+

8π2

45
T 4

(
1 − 15

4
αs

π

)
. (52)

Let us first note that, for T � μ and P = 0, the baryon
chemical potential tends to

μB = 3μq −→ 3B1/4

[
2π2

(1 − 2αs/π)

]1/4

= 1010MeV,

(αs = 1/2, B1/4 = 145MeV), (53)

which assures us that interacting cold quark matter is an
excited state of nuclear matter. We have assumed that,
except for T , there is no relevant dimensional parameter,
e.g., quark mass mq or the quantity Λ which enters into
the running coupling constant αs(q2). Therefore the rela-
tivistic relation between the energy density and pressure,
viz., ε − B = 3(P + B), is preserved, which leads to

P =
1
3
(ε − 4B), (54)

a relation we have used occasionally before (see eq. (9)).
From eq. (54), it follows that, when the pressure van-

ishes, the energy density is 4B, independent of the values
of μ and T which fix the line P = 0. This behavior is con-
sistent with the hadronic gas phase. This may be used as
a reason to choose the parameters of both phases in such
a way that the two lines P = 0 coincide. We will return
to this point again below. For P > 0, we have ε > 4B. Re-
call that, in the hadronic gas, we had 0 < ε < 4B. Thus,
above the critical curve of the μ, T plane, we have the
quark-gluon plasma exposed to an external force.



Eur. Phys. J. A (2015) 51: 115 Page 9 of 16

Fig. 3. a) The critical curves (P = 0) of the two models in the T , μ plane (qualitatively). The region below the full line is de-
scribed by the statistical bootstrap model and the region above the broken line by the quark-gluon plasma. The critical curves can
be made to coincide. b) P , V diagram (qualitative) of the phase transition (hadron gas to quark-gluon plasma) along the broken
line T = const. of fig. 3a. The coexistence region is found from the usual Maxwell construction (the shaded areas being equal).

In order to obtain an idea of the form of the P = 0
critical curve in the μ, T plane for the quark-gluon plasma,
we rewrite eq. (52) using eqs. (45) and (46) for P = 0

B =
1 − 2αs/π

162π2

[
μ2 + (3πT )2

]2

+
T 4π2

45

[
12

(
1 − 5

3
αs

π

)
+ 8

(
1 − 15

4
αs

π

)]
. (55)

Here, the last term is the glue pressure contribution. (If
the true vacuum structure is determined by the glue-
glue interaction, then this term could be modified signifi-
cantly.) We find that the greatest lower bound on temper-
ature Tq at μ = 0 is about

Tq ∼ B1/4 ≈ 145–190MeV. (56)

This result can be considered to be correct to within
20%. Its order of magnitude is as expected. Taking
eq. (55) as it is, we find for αs = 1/2, Tq = 0.88B1/4.
Omitting the gluon contribution to the pressure, we find
Tq = 0.9B1/4. It is quite likely that, with the proper
treatment of the glue field and the plasma corrections,
and with larger B1/4 ∼ 190MeV, the desired value of
Tq = T0 corresponding to the statistical bootstrap choice
will follow. Furthermore, allowing some reasonable T , μ
dependence of αs, we can then easily obtain an agreement
between the critical curves.

However, it is not necessary for the two critical curves
to coincide, even though this would be preferable. As the
quark plasma is the phase into which individual hadrons
dissolve, it is sufficient if the quark plasma pressure van-
ishes within the boundary set for non-vanishing positive
pressure of the hadronic gas. It is quite satisfactory for the
theoretical development that this is the case. In fig. 3a, a
qualitative picture of the two P = 0 lines is shown in
the μ, T plane. Along the dotted straight line at constant
temperature, we show in fig. 3b the pressure as a function
of the volume (a P , V diagram). The volume is obtained

by inverting the baryon density at constant fixed baryon
number

V =
〈b〉
ν

. (57)

The behavior of P (V, T = const.) for the hadronic gas
phase is as described before in the statistical bootstrap
model. For large volumes, we see that P falls with ris-
ing V . However, when hadrons get close to each other
so that they form larger and larger lumps, the pres-
sure drops rapidly to zero. The hadronic gas becomes a
state of few composite clusters (internally already con-
sisting of the quark plasma). The second branch of the P
(V, T = const.) line meets the first one at a certain volume
V = Vm.

The phase transition occurs for T = const. in fig. 3b
at a vapor pressure Pv obtained from the conventional
Maxwell construction: the shaded regions in fig. 3b are
equal. Between the volumes V1 and V2, matter coexists
in the two phases with the relative fractions being deter-
mined by the magnitude of the actual volume. This leads
to the occurrence of a third region, viz., the coexistence
region of matter, in addition to the pure quark and hadron
domains. For V < V1, corresponding to ν > ν1 ∼ 1/V1, all
matter has gone into the quark plasma phase.

The dotted line in fig. 3b encloses (qualitatively) the
domain in which the coexistence between the two phases
of hadronic matter seems possible. We further note that,
at low temperatures T ≤ 50MeV, the plasma and hadro-
nic gas critical curves meet each other in fig. 3a. This
is just the domain where, at present, our description of
the hadronic gas fails, while the quark-gluon plasma also
begins to suffer from infrared difficulties. Both approaches
have a very limited validity in this domain.

The qualitative discussion presented above can be eas-
ily supplemented with quantitative results. But first we
turn our attention to the modifications forced onto this
simple picture by the experimental circumstances in high
energy nuclear collisions.



Page 10 of 16 Eur. Phys. J. A (2015) 51: 115

Fig. 4. a) The critical curve of hadron matter (bootstrap), together with some “cooling curves” in the T , μ plane. While the
system cools down along these lines, it emits particles. When all particles have become free, it comes to rest on some point
on these curves (“freeze out”). In the shaded region, our approach may be invalid. b) The critical curve of hadron matter
(bootstrap), together with some “cooling curves” (same energy as in fig. 4a) in the variables T and ν/ν0 = ratio of baryon
number density to normal nuclear baryon number density. In the shaded region, our approach may be invalid.

5 Nuclear collisions and inclusive particle
spectra

We assume that in relativistic collisions triggered to small
impact parameters by high multiplicities and absence of
projectile fragments [24], a hot central fireball of hadro-
nic matter can be produced. We are aware of the whole
problematic connected with such an idealization. A proper
treatment should include collective motions and distri-
bution of collective velocities, local temperatures, and
so on [25–28], as explained in the lecture by R. Hage-
dorn [16]. Triggering for high multiplicities hopefully elim-
inates some of the complications. In nearly symmetric col-
lisions (projectile and target nuclei are similar), we can ar-
gue that the numbers of participants in the center of mass
of the fireball originating in the projectile or target are
the same. Therefore, it is irrelevant how many nucleons
do form the fireball —and the above symmetry argument
leads, in a straightforward way, to a formula for the center
of mass energy per participating nucleon

U :=
Ec.m.

A
= mN

√

1 +
Ek,lab/A

2mN
, (58)

where Ek,lab/A is the projectile kinetic energy per nucleon
in the laboratory frame. While the fireball changes its
baryon density and chemical composition (π + p ↔ Δ,
etc.) during its lifetime through a change in temperature
and chemical potential, the conservation of energy and
baryon number assures us that U in eq. (58) remains con-
stant, assuming that the influence on U of pre-equilibrium
emission of hadrons from the fireball is negligible. As U is
the total energy per baryon available, we can, supposing

that kinetic and chemical equilibrium have been reached,
set it equal to the ratio of thermodynamic expectation
values of the total energy and baryon number

U =
〈E〉
〈b〉 =

E(β, λ)
ν(β, λ)

. (59)

Thus we see that, through eq. (59), the experimental value
of U in eq. (58) fixes a relation between allowable values of
β, λ: the available excitation energy defines the tempera-
ture and the chemical composition of hadronic fireballs. In
fig. 4a and b, these paths are shown for a choice of kinetic
energies Ek,lab/A in the μ, T plane and in the ν, T plane,
respectively. In both cases, only the hadronic gas domain
is shown.

We wish to note several features of the curves shown in
fig. 4a and b that will be relevant in later considerations:

1) Beginning at the critical curve, the chemical poten-
tial first drops rapidly when T decreases and then
rises slowly as T decreases further (fig. 4a). This
corresponds to a monotonically falling baryon density
with decreasing temperature (fig. 4b), but implies
that, in the initial expansion phase of the fireball, the
chemical composition changes more rapidly than the
temperature.

2) The baryon density in fig. 4b is of the order of 1–1.5
of normal nuclear density. This is a consequence of
the choice of B1/4 = 145MeV. Were B three times
as large, i.e., B1/4 = 190MeV, which is so far not
excluded, then the baryon densities in this figure
would triple to 3–5ν0. Furthermore, we observe that,
along the critical curve of the hadronic gas, the baryon
density falls with rising temperature. This is easily
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Fig. 5. a) P, V diagram of “cooling curves” belonging to different kinetic laboratory energies per nucleon: (1) 1.8 GeV,
(2) 3.965 GeV, (3) 5.914 GeV. In the history of a collision, the system comes down the quark lines and jumps somewhere
over to the hadron curves (Maxwell). Broken lines show the diverging pressure of pointlike bootstrap hadrons. b) The total
specific entropy per baryon in the hadronic gas phase. Same energies per nucleon as in fig. 5a, and a fourth value 1.07 GeV.

understood as, at higher temperature, more volume is
taken up by the numerous mesons.

3) Inspecting fig. 4b, we see that, at given U , the tem-
peratures at the critical curve and those at about ν0/2
differ little (10%) for low U , but more significantly
for large U . Thus, highly excited fireballs cool down
more before dissociation (“freeze out”). As particles
are emitted all the time while the fireball cools down
along the lines of fig. 4a and b, they carry kinetic
energies related to various different temperatures. The
inclusive single particle momentum distribution will
yield only averages along these cooling lines.

Another remark which does not follow from the curves
shown is:

4) Below about 1.8GeV, an important portion of the to-
tal energy is in the collective (hydrodynamical) motion
of hadronic matter, hence the cooling curves at con-
stant excitation energy do not properly describe the
evolution of the fireball.

Calculations of this kind can also be carried out for the
quark plasma. They are, at present, uncertain due to the
unknown values of αs and B1/4. Fortunately, there is one
particular property of the equation of state of the quark-
gluon plasma that we can easily exploit.

Combining eq. (54) with eq. (59), we obtain

P =
1
3
(Uν − 4B). (60)

Thus, for a given U (the available energy per baryon in a
heavy ion collision), eq. (60) describes the pressure-volume
(∼ 1/ν) relation. By choosing to measure P in units of B
and ν in units of normal nuclear density ν0 = 0.14/ fm3,
we find

P

B =
4
3

(
γ

U

mN

ν

ν0
− 1

)
, (61)

with

γ :=
mNν0

4B = 0.56, for : B1/4 = 145MeV, ν0 = 0.14/fm3.

Here, γ is the ratio of the energy density of normal nu-
clei (εN = mNν0) and of quark matter or of a quark bag
(εq = 4B). In fig. 5a, this relation is shown for three
projectile energies: Ek,lab/A = 1.80GeV, 3.965GeV, and
5.914GeV, corresponding to U = 1.314GeV, 1.656GeV,
and 1.913GeV, respectively. We observe that, even at the
lowest energy shown, the quark pressure is zero near the
baryon density corresponding to 1.3 normal nuclear den-
sity, given the current value of B.

Before discussing this point further, we note that the
hadronic gas branches of the curves in fig. 5a and b show a
quite similar behavior to that shown at constant temper-
ature in fig. 3b. Remarkably, the two branches meet each
other at P = 0, since both have the same energy density
ε = 4B and therefore V (P = 0) ∼ 1/ν = U/ε = U/4B.
However, what we cannot see by inspecting fig. 5a and b
is that there will be a discontinuity in the variables μ and
T at this point, except if parameters are chosen so that
the critical curves of the two phases coincide. Indeed, near
to P = 0, the results shown in fig. 5a should be replaced
by points obtained from the Maxwell construction. The
pressure in a nuclear collision will never fall to zero. It
will correspond to the momentary vapor pressure of the
order of 0.2B as the phase change occurs.

A further aspect of the equations of state for the hadro-
nic gas is also illustrated in fig. 5a. Had we ignored the
finite size of hadrons (one of the van der Waals effects)
in the hadron gas phase then, as shown by the dash-
dotted lines, the phase change could never occur because
the point particle pressure would diverge where the quark
pressure vanishes. In our opinion, one cannot say it often
enough: inclusion of the finite hadronic size and of the
finite temperature when considering the phase transition
to quark plasma lowers the relevant baryon density (from
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8–14ν0 for cold point-nucleon matter) to 1–5ν0 (depend-
ing on the choice of B) in 2–5GeV/A nuclear collisions.
The possible formation of quark-gluon plasma in nuclear
collisions was first discussed quantitatively in ref. [3], see
also ref. [29].

The physical picture underlying our discussion is an
explosion of the fireball into vacuum with little energy
being converted into collective motion, e.g., hydrodynam-
ical flow, or being taken away by fast pre-hadronization
particle emission. Thus the conserved internal excitation
energy can only be shifted between thermal (kinetic)
and chemical excitations of matter. “Cooling” thus re-
ally means that, during the explosion, the thermal energy
is mostly convered into chemical energy, e.g., pions are
produced.

While it is at present hard to judge the precise amount
of expected deviation from the cooling curves shown in
fig. 2, it is possible to show that they are entirely inconsis-
tent with the notion of reversible adiabatic, i.e., entropy
conserving, expansion. As the expansion proceeds along
U = const. lines, we can compute the entropy per par-
ticipating baryon using eqs. (36) and (37), and we find a
significant growth of total entropy. As shown in fig. 5b, the
entropy rises initially in the dense phase of the matter by
as much as 50–100% due to the pion production and res-
onance decay. Amusingly enough, as the newly produced
entropy is carried mostly by pions, one will find that the
entropy carried by protons remains constant. With this
remarkable behavior of the entropy, we are in a certain
sense, victims of our elaborate theory. Had we used, e.g.,
an ideal gas of Fermi nucleons, then the expansion would
seem to be entropy conserving, as pion production and
other chemistry were forgotten. Our fireballs have no ten-
dency to expand reversibly and adiabatically, as many re-
action channels are open. A more complete discussion of
the entropy puzzle can be found in [1].

Inspecting fig. 4a and b again, it seems that a pos-
sible test of the equations of state for the hadronic gas
consists in measuring the temperature in the hot fireball
zone, and doing this as a function of the nuclear colli-
sion energy. The plausible assumption made is that the
fireball follows the “cooling” lines shown in fig. 4a and
b until final dissociation into hadrons. This presupposes
that the surface emission of hadrons during the expansion
of the fireball does not significantly alter the available en-
ergy per baryon. This is more likely true for sufficiently
large fireballs. For small ones, pion emission by the sur-
face may influence the energy balance. As the fireball ex-
pands, the temperature falls and the chemical composition
changes. The hadronic clusters dissociate and more and
more hadrons are to be found in the “elementary” form of
a nucleon or a pion. Their kinetic energies are reminiscent
of the temperature found at each phase of the expansion.

To compute the experimentally observable final tem-
perature [1, 19], we shall argue that a time average must
be performed along the cooling curves. Not knowing the
reaction mechanisms too well, we assume that the tem-
perature decreases approximately linearly with the time
in the significant expansion phase. We further have to al-

low that a fraction of particles emitted can be reabsorbed
in the hadronic cluster. This is a geometric problem and,
in a first approximation, the ratio of the available volume
Δ to the external volume Vex is the probability that an
emitted particle not be reabsorbed, i.e., that it can escape

Resc =
Δ

Vex
= 1 − ε(β, λ)

4B . (62)

The relative emission rate is just the integrated momen-
tum spectrum

Remis =
∫

d3p

(2π)3
e−

√
p2+m2/T+μ/T =

m2T

2π2
K2(m/T ) eμ/T .

(63)
The chemical potential acts only for nucleons. In the case
of pions, it has to be dropped from the above expression.
For the mean temperature, we thus find

〈T 〉 =

∫

c

RescRemisT dT
∫

c

RescRemis dT

, (64)

where the subscript “c” on the integral indicates here a
line integral along that particular cooling curve in fig. 4a
and b which belongs to the energy per baryon fixed by the
experimentalist.

In practice, the temperature is most reliably measured
through the measurement of mean transverse momenta of
the particles. It may be more practical therefore to cal-
culate the average transverse momentum of the emitted
particles. In principle, to obtain this result we have to per-
form a similar averaging to the one above. For the average
transverse momentum at given T, μ, we find [14]

〈p⊥(m,T, μ)〉p =

∫
p⊥e−

√
p2+m2−μ)/T d3p

∫
e−

√
p2+m2−μ)/T d3p

=

√
πmT/2K 5

2

(
m
T

)
eμ/T

K2

(
m
T

)
eμ/T

. (65)

The average over the cooling curve is then

〈〈p⊥(m,T, μ)〉p〉c =

∫

c

Δ

Vex
T 3/2

√
πm

2
K 5

2

(m

T

)
eμ/T dT

∫

c

Δ

Vex
TK2

(m

T

)
eμ/T dT

.

(66)
We did verify numerically that the order of averages does
not matter

〈p⊥(m, 〈T 〉c, μ)〉p ≈ 〈〈p⊥(m,T, μ)〉p〉c, (67)

which shows that the mean transverse momentum is also
the simplest (and safest) method of determining the aver-
age temperature (indeed better than fitting ad hoc expo-
nential type functions to p⊥ distributions).
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Fig. 6. Mean temperatures for nucleons and pions together
with the critical temperature belonging to the point where the
“cooling curves” start off the critical curve (see fig. 4a). The
mean temperatures are obtained by integrating along the cool-
ing curves. Note that TN is always greater than Tπ.

In the presented calculations, we chose the bag con-
stant B = (145MeV)4, but we now believe that a larger
B should be used. As a consequence of our choice and the
measured pion temperature of 〈T 〉exπ = 140MeV at high-
est ISR energies, we have to choose the constant H such
that T0 = 190MeV (see eq. (43b)).

The average temperature, as a function of the range
of integration over T , reaches different limiting values for
different particles. The limiting value obtained thus is the
observable “average temperature” of the debris of the in-
teraction, while the initial temperature Tcr at given Ek,lab

(full line in fig. 6) is difficult to observe. When integrating
along the cooling line as in eq. (64), we can easily, at each
point, determine the average hadronic cluster mass. The
integration for protons is interrupted (protons are “frozen
out”) when the average cluster mass is about half the nu-
cleon isobar mass. We have also considered baryon den-
sity dependent freeze-out, but such a procedure depends
strongly on the unreliable value of B.

Our choice of the freeze-out condition was made in
such a way that the nucleon temperature at Ek,lab/A =
1.8GeV is about 120MeV. The model dependence of our
freeze-out introduces an uncertainty of several MeV in the
average temperature. In fig. 6, the pion and nucleon av-
erage temperatures are shown as a function of the heavy
ion kinetic energy. Two effects contributed to the differ-
ence between the π and N temperatures:

1) The particular shape of the cooling curves (fig. 4a).
The chemical potential drops rapidly from the criti-
cal curve, thereby damping relative baryon emission at
lower T . Pions, which do not feel the baryon chemical
potential, continue being created also at lower temper-
atures.

2) The freeze-out of baryons occurs earlier than the
freeze-out of pions.

A third effect has been so far omitted —the emission of
pions from two-body decay of long-lived resonances [1]
would lead to an effective temperature which is lower in
nuclear collisions.

Fig. 7. Mean transverse momenta of nucleons and pions found
by integrating along the “cooling curves”.

In fig. 7, we show the dependence of the average trans-
verse momenta of pions and nucleons on the kinetic energy
of the heavy ion projectiles.

6 Strangeness in heavy ion collisions

From the averaging process described here, we have
learned that the temperatures and transverse momenta
of particles originating in the hot fireballs are more remi-
niscent of the entire history of the fireball expansion than
of the initial hot compressed state, perhaps present in the
form of quark matter. We may generalize this result and
then claim that most properties of inclusive spectra are
reminiscent of the equations of state of the hadronic gas
phase and that the memory of the initial dense state is
lost during the expansion of the fireballs as the hadronic
gas rescatters many times while it evolves into the final
kinetic and chemical equilibrium state.

In order to observe properties of quark-gluon plasma,
we must design a thermometer, an isolated degree of free-
dom weakly coupled to the hadronic matter. Nature has,
in principle (but not in practice) provided several such
thermometers: leptons and heavy flavors of quarks. We
would like to point here to a particular phenomenon per-
haps quite uniquely characteristic of quark matter. First
we note that, at a given temperature, the quark-gluon
plasma will contain an equal number of strange (s) quarks
and antistrange (s) quarks, naturally assuming that the
hadronic collision time is much too short to allow for light
flavor weak interaction conversion to strangeness. Thus,
assuming equilibrium in the quark plasma, we find the
density of the strange quarks to be (two spins and three
colors)

s

V
=

s

V
= 6

∫
d3p

(2π)3
e−

√
p2+m2

s/T

= 3
Tm2

s

π2
K2(ms/T ), (68)
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neglecting for the time being the perturbative corrections
and, of course, ignoring weak decays. As the mass ms of
the strange quarks in the perturbative vacuum is believed
to be of the order of 280–300MeV, the assumption of equi-
librium for ms/T ∼ 2 may indeed be correct. In eq. (68),
we were able to use the Boltzmann distribution again, as
the density of strangeness is relatively low. Similarly, there
is a certain light antiquark density (q stands for either u
or d )

q

V
= 6

∫
d3p

(2π)3
e−|p|/T−μq/T = e−μq/T T 3 6

π2
, (69)

where the quark chemical potential is μq = μ/3, as given
by eq. (46). This exponent suppresses the qq pair produc-
tion.

What we intend to show is that there are many more
s quarks than antiquarks of each light flavor. Indeed,

s

q
=

1
2

(ms

T

)2

K2

(ms

T

)
eμ/3T . (70)

The function x2K2(x) is, for example, tabulated in [30].
For x = ms/T between 1.5 and 2, it varies between 1.3
and 1. Thus, we almost always have more s than q quarks
and, in many cases of interest, s/q ∼ 5. As μ → 0, there
are about as many u and q quarks as there are s quarks.

When the quark matter dissociates into hadrons, some
of the numerous s may, instead of being bound in a
qs kaon, enter into a q q s antibaryon and, in particu-
lar3, a Λ or Σ0. The probability for this process seems
to be comparable to the similar one for the production
of antinucleons by the antiquarks present in the plasma.
What is particularly noteworthy about the s-carrying an-
tibaryons is that they can conventionally only be pro-
duced in direct pair production reactions. Up to about
Ek,lab/A = 3.5GeV, this process is very strongly sup-
pressed by energy–momentum conservation because, for
free pp collisions, the threshold is at about 7 GeV. We
would thus like to argue that a study of the Λ and Σ0

in nuclear collisions for 2 < Ek,lab/A < 4GeV could shed
light on the early stages of the nuclear collisions in which
quark matter may be formed.

Let us mention here another effect of importance in
this context: the production rate of a pair of particles with
a conserved quantum number like strangeness will usually
be suppressed by the Boltzmann factor e−2m/T , rather
than a factor e−m/T as is the case in thermomechanical
equilibrium (see, for example, the addendum in [14]). As
relativistic nuclear collisions are just on the borderline be-
tween those two limiting cases, it is important when con-
sidering the yield of strange particles to understand the
transition between them. We will now show how one can
describe these different cases in a unified statistical de-
scription [31].

As we have already implicitly discussed (see eq. (12)),
the logarithm of the grand partition function Z is a sum

3 Σ0 decays into Λ by emitting a photon and is always count-
ed within the Λ abundance.

over all different particle configurations, e.g., expressed
with the help of the mass spectrum. Hence, we can now
concentrate in particular on that part of lnZ which is
exclusively associated with the strangeness.

As the temperatures of interest to us and which allow
appreciable strangeness production are at the same time
high enough to prevent the strange particles from being
thermodynamically degenerate, we can restrict ourselves
again to the discussion of Boltzmann statistics only.

The contribution to Z of a state with k strange parti-
cles is

Zk =
1
k!

[
∑

s

Zs
I (T, V )

]k

, (71)

where the one-particle function Z1 for a particle of mass
ms is given in eq. (16). To include both particles and an-
tiparticles as two thermodynamically independent phases
in eq. (71), the sum over s in eq. (71) must include
them both. As the quantum numbers of particles (p)
and antiparticles (a) must always be present with ex-
actly the same total number, not each term in eq. (71)
can contribute. Only when n = k/2 = number of par-
ticles = number of antiparticles is exactly fulfilled do we
have a physical state. Hence,

Zpair
2n =

1
(2n)!

(
2n
n

)⎛

⎝
∑

sp

Z
sp
1

⎞

⎠
n (

∑

sa

Zsa
1

)n

. (72)

We now introduce the fugacity factor fn to be able to
count the number of strange pairs present. Allowing an
arbitrary number of pairs to be produced, we obtain

Zs(β, V ; f) =
∞∑

n=0

fn

n!n!

⎛

⎝
∑

sp

Z
sp
1

⎞

⎠
n (

∑

sa

Zsa
1

)n

= I0(
√

4y), (73)

where I0 is the modified Bessel function and

y = f

⎛

⎝
∑

sp

Z
sp
1

⎞

⎠
(
∑

sa

Zsa
1

)
. (74)

We have to maintain the difference between the particles
(p) and antiparticles (a), as in nuclear collisions the sym-
metry is broken by the presence of baryons and there is an
associated need for a baryon fugacity (chemical potential
μ) that controls the baryon number. We obtain

Zp,a
1 :=

∑

sp,a

Z
sp,a
1

=
V T 3

2π2

{
2W (xK) + 2e±μ/T [W (xΛ) + 3W (xΣ)]

}
,

(75)

for particles (+μ) and antiparticles (−μ), where W (x) =
x2K2(x), xi = mi/T , and all kaons and hyperons are
counted. In the quark phase, we have

Zp,a
1,q =

V T 3

2π2

[
6 e±μ/3T W (xs)

]
, (76)
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Fig. 8. The quenching factor for strangeness production as a
function of the active volume V/Vh, where Vh = 4π/3 fm3.

with Txs = ms ∼ 280MeV. We note in passing that
the baryon chemical potential cancels out in y of eq. (74)
when eq. (76) is inserted in the quark phase (compare with
eq. (68)).

By differentiating lnZs of eq. (73) with respect to f ,
we find the strangeness number present at given T and V

〈n〉s = f
∂

∂f
ln Zs

∣∣∣∣
f=1

=
I1(

√
4y)

I0(
√

4y)
√

y. (77)

For large y, that is, at given T for large volume V , we
find 〈n〉s =

√
y ∼ e−m/T , as expected. For small y, we find

〈n〉s = y ∼ e−2m/T . In fig. 8, we show the dependence of
the quenching factor I1/I0 = η as a function of the volume
V measured in units of Vh = 4π/3 fm3 for a typical set of
parameters: T = 150, μ = 550MeV (hadronic gas phase).

The following observations follow from inspection of
fig. 8:

1) The strangeness yield is a qualitative measure of the
hadronic volume in thermodynamic equilibrium.

2) Total strangeness yield is not an indicator of the
phase transition to quark plasma, as the enhancement
(
√

ηq/η = 1.25) in yield can be reinterpreted as being
due to a change in hadronic volume.

3) We can expect that, in nuclear collisions, the ac-
tive volume will be sufficiently large to allow the
strangeness yield to correspond to that of “infinite”
volume for reactions triggered on “central collisions”.
Hence, e.g., Λ production rate will significantly exceed
that found in pp collisions.

Our conclusions about the significance of Λ as an indicator
of the phase transition to quark plasma remain valid as
the production of Λ in the hadronic gas phase will only be
possible in the very first stages of the nuclear collisions, if
sufficient center of mass energy is available.

7 Summary

Our aim has been to obtain a description of hadronic
matter valid for high internal excitations. By postulat-
ing the kinetic and chemical equilibrium, we have been
able to develop a thermodynamic description valid for
high temperatures and different chemical compositions.
In our work we have found two physically different do-
mains: firstly, the hadronic gas phase, in which individual
hadrons can exist as separate entities, but are sometimes
combined into larger hadronic clusters, while in the second
domain, individual hadrons dissolve into one large cluster
consisting of hadronic constituents, viz., the quark-gluon
plasma.

In order to obtain a theoretical description of both
phases, we have used some “common” knowledge and
plausible interpretations of currently available experimen-
tal observations. In particular, in the case of hadronic gas,
we have completely abandoned a more conventional La-
grangian approach in favour of a semi-phenomenological
statistical bootstrap model of hadronic matter that incor-
porates those properties of hadronic interaction that are,
in our opinion, most important in nuclear collisions.

In particular, the attractive interactions are included
through the rich, exponentially growing hadronic mass
spectrum τ(m2, b), while the introduction of the finite vol-
ume of each hadron is responsible for an effective short-
range repulsion. Aside from these manifestations of strong
interactions, we only satisfy the usual conservation laws
of energy, momentum, and baryon number. We neglect
quantum statistics since quantitative study has revealed
that this is allowed above T ≈ 50MeV. But we allow
particle production, which introduces a quantum physical
aspect into the otherwise “classical” theory of Boltzmann
particles.

Our approach leads us to the equations of state of
hadronic matter which reflect what we have included in
our considerations. It is the quantitative nature of our
work that allows a detailed comparison with experiment.
This work has just begun and it is too early to say if the
features of strong interactions that we have chosen to in-
clude in our considerations are the most relevant ones. It is
important to observe that the currently predicted pion and
nucleon mean transverse momenta and temperatures show
the required substantial rise (see fig. 7) as required by the
experimental results available at Ek,lab/A = 2GeV (BE-
VALAC, see [24]) and at 1000GeV (ISR, see [22]). Further
comparisons involving, in particular, particle multiplicities
and strangeness production are under consideration.

We also mention the internal theoretical consistency of
our two-fold approach. With the proper interpretation, the
statistical bootstrap leads us, in a straightforward fashion,
to the postulate of a phase transition to the quark-gluon
plasma. This second phase is treated by a quite different
method. In addition to the standard Lagrangian quantum
field theory of weakly interacting particles at finite tem-
perature and density, we also introduce the phenomeno-
logical vacuum pressure and energy density B.
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Perhaps the most interesting aspect of our work is the
realization that the transition to quark matter will occur
at much lower baryon density for highly excited hadro-
nic matter than for matter in the ground state (T = 0).
The precise baryon density of the phase transition depends
somewhat on the bag constant, but we estimate it to be at
about 2–4ν0 at T = 150MeV. The detailed study of the
different aspects of this phase transition, as well as of pos-
sible characteristic signatures of quark matter, must still
be carried out. We have given here only a very preliminary
report on the status of our present understanding.

We believe that the occurrence of the quark plasma
phase is observable and we have proposed therefore a
measurement of the Λ̄/p relative yield between 2 and
10GeV/N kinetic energies. In the quark plasma phase, we
expect a significant enhancement of Λ̄ production which
will most likely be visible in the Λ̄/p relative rate.
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