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Abstract. We present improved nucleon-nucleon potentials derived in chiral effective field theory up to
next-to-next-to-next-to-leading order. We argue that the nonlocal momentum-space regulator employed in
the two-nucleon potentials of previous works (Nucl. Phys. A 747, 362 (2005) and Phys. Rev. C 68, 041001
(2003)) is not the most efficient choice, in particular since it affects the long-range part of the interaction. We
are able to significantly reduce finite-cutoff artefacts by using an appropriate regularization in coordinate
space which maintains the analytic structure of the amplitude. The new potentials do not require the
additional spectral function regularization employed in (Nucl. Phys. A 747, 362 (2005)) to cut off the
short-range components of the two-pion exchange and make use of the low-energy constants ci and di

determined from pion-nucleon scattering without any fine tuning. We discuss in detail the construction of
the new potentials and convergence of the chiral expansion for two-nucleon observables. We also employ a
simple approach for estimating the theoretical uncertainty in few-nucleon calculations from the truncation
of the chiral expansion that replaces previous reliance on cutoff variation.

1 Introduction

In the past decade, we have witnessed impressive progress
in the field of low-energy nuclear physics which is, to a
large extent, related to exciting theoretical developments.
On the one hand, rapidly increasing computational re-
sources and improvements in algorithms make selected
nuclear physics observables amenable to numerical simu-
lations in lattice QCD, see ref. [1] for a review article. On
the other hand, considerable progress has been achieved
towards a quantitative description of nuclear forces within
the framework of chiral effective field theory (EFT) ini-
tiated in the pioneering work of Weinberg [2]. This ap-
proach has been used to derive nuclear forces, defined as
kernels of the corresponding dynamical equations, order
by order within the EFT expansion, see refs. [3,4] for the
first quantitative studies along these lines. The resulting
scheme, based on solving the nuclear A-body problem in
a Hamiltonian framework with interactions between nu-
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cleons tied to QCD via its symmetries, has been devel-
oped into a major research field in computational few-
and many-body physics and provides nowadays a com-
monly accepted approach to ab initio studies of nuclear
structure and reactions [5–9]. In addition to offering a nat-
ural explanation for the observed hierarchy of many-body
forces, V2N � V3N � V4N . . ., and allowing for the es-
timation of the theoretical uncertainty, it is expected to
shed light on the long-standing three-nucleon force (3NF)
problem, an old but still very current topic in nuclear
physics [6,7]. While effects of 3NFs in low-energy nuclear
observables are expected to be smaller than the ones of the
nucleon-nucleon (NN) force, their inclusion is mandatory
at the level of accuracy of today’s few- and many-body
ab initio calculations. However, in spite of decades of ef-
fort, the structure of the 3NF is not properly described
by the available phenomenological models [6]. Given the
very rich spin-momentum structure of the 3NF [10–12],
scarcer database for nucleon-deuteron scattering as com-
pared to the NN system and relatively high computational
cost of solving the Faddeev equations, further progress in
this fields requires substantial input from theory. This pro-
vides a strong motivation to study the 3NF within chiral



Page 2 of 29 Eur. Phys. J. A (2015) 51: 53

EFT, and this topic is recognized as an important frontier
in the field [9, 13, 14]. In particular, the recently formed
Low Energy Nuclear Physics International Collaboration
(LENPIC) [15] intends to carry out detailed ab initio cal-
culations of few- and many-nucleon systems in order to
study effects of the 3NF complete through fourth order in
the chiral expansion, i.e. next-to-next-to-next-to-leading
order (N3LO).

Clearly, looking for fine details of the 3NF, which it-
self is expected to provide a small correction to the domi-
nant NN force, requires that the NN interaction is known
with a sufficiently high accuracy and that one is able
to carry out reliable estimation of the theoretical uncer-
tainty. While accurate N3LO NN potentials have been
available for ten years [16, 17], there are certain issues
which might become relevant at the accuracy level of the
ongoing and planned calculations. First of all, the poten-
tials of ref. [16] employ an additional spectral function reg-
ularization (SFR) [18,19] in order to suppress an unphys-
ically strong attraction caused by the very strong short-
range components of the subleading two-pion exchange.
On the other hand, the available calculations of the 3NF
at and beyond the N3LO level employ the standard di-
mensional regularization. Introducing the additional SFR
on some of the 3NF contributions such as, for example, the
so-called ring diagrams, appears to be a nontrivial task.
Notice that the potential of ref. [17] avoids the usage of
the SFR, but probably at the cost of allowing for a vari-
able functional form of the regulator function for different
terms in the interaction, see table F.2 in ref. [20]. Another
issue concerns the adopted values of certain pion-nucleon
(πN) low-energy constants (LECs) such as especially the
ci’s, which accompany the subleading vertices in the πN
effective Lagrangian. These LECs govern the strength of
the two-pion exchange NN potential and of the long- and
intermediate-range 3NFs and should be taken consistently
with the πN system. It is well known that some of these
LECs and, especially, the LEC c3 receive significant con-
tributions associated with the intermediate Δ excitation
of the nucleon and appear to be numerically large [21].
It was found in ref. [16] that the large empirical values
of c3 would result in generating unphysical deeply bound
states in the NN system, so that a reduced value for this
LEC has been used in the N3LO potential of ref. [16].
In the N3LO potential of ref. [17], the LECs c2,3,4 were
actually tuned to improve the quality of the fit which re-
sulted, in particular, in the value of c4 incompatible with
the available determinations from the πN system. Per-
haps most importantly, the theoretical uncertainty of the
calculations due to truncation of the chiral expansion at
a given order was so far at best estimated by means of a
residual cutoff dependence. As will be argued below, such
an approach does not allow for a reliable quantification of
the theoretical accuracy.

All these issues clearly call for taking a fresh look at
the NN system in chiral EFT. In this work, we introduce
a new generation of the chiral N3LO NN potentials which
make use of a local regularization of the pion exchange
contributions. The resulting potentials provide an excel-
lent description of low-energy NN scattering observables

and the deuteron properties and resolve all the issues men-
tioned above. In addition, we employ a simple approach
for estimating the uncertainty due to truncation of the chi-
ral expansion, which is widely used in chiral perturbation
theory and does not rely on cutoff variation, and study in
detail the convergence of the chiral expansion for various
NN observables.

Our paper is organized as follows. In sect. 2, we discuss
the chiral expansion for the NN potential up to N3LO. The
new regularization scheme is introduced in sect. 3, while
sect. 4 describes our fit procedure and results for the phase
shifts. The cutoff dependence of the obtained predictions
is addressed in sect. 5 while our results for the deuteron
properties can be found in sect. 6. The theoretical uncer-
tainty of our results is discussed in sect. 7, where we also
analyze the convergence of the chiral expansion for vari-
ous NN scattering observables. Finally, the main findings
of our work are summarized in sect. 8.

2 Chiral expansion of the two-nucleon
potential

Chiral effective field theory provides a well-defined pertur-
bative expansion for pionic and single-baryon observables
as well as for nuclear forces and current operators. In the
two-flavor sector we are interested in here, the expansion
parameter, denoted as Q, is defined as

Q ∈
{

p

Λb
,
Mπ

Λb

}
, (1)

where p refers to magnitude of three momenta of external
particles, Mπ is the pion mass and Λb is the breakdown
scale of chiral EFT. In the Goldstone boson and single-
nucleon sectors, this scale can be naturally expected to
be of the order of the ρ-meson mass Mρ

1. It was also ar-
gued [22] that it cannot be larger than the chiral symmetry
breaking scale Λχ = 4πFπ, with Fπ � 92MeV the pion
decay constant. On the other hand, in the few-nucleon sec-
tor, calculations are usually carried out employing a finite
ultraviolet cutoff [23], whose value is typically chosen of
the order of Λ ∼ 500MeV. Using soft values of the cutoff
may effectively reduce the breakdown scale in the actual
calculations. It is, therefore, more appropriate to estimate
the breakdown scale of nuclear chiral EFT in a more con-
servative way rather than by Mρ � 770MeV or even the
chiral symmetry breaking scale Λχ � 1.2GeV. We will
discuss this issue in more detail in sects. 5 and 7.

Up to N3LO, the NN potential involves contributions
from one-, two- and three-pion exchange and contact
terms with up to four derivatives which parametrize short-
range interactions

V = V1π + V2π + V3π + Vcont, (2)
1 In the nucleon sector, one may expect the breakdown scale

of the chiral expansion to be lower due to the appearance of
the Δ(1232) resonance. The effects of the intermediate Δ ex-
citations can by systematically taken into account by treating
the Δ isobar as an explicit degree of freedom.
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Fig. 1. Chiral expansion of the NN potential up to N3LO. Solid and dashed lines refer to nucleons and pions, respectively. Solid

dots denote the vertices from the lowest-order effective Lagrangians L(0)
π , L(0)

πN and L(0)
NN with the superscript referring to the

chiral dimension, for which we use the notation of ref. [5], see this work for explicit expressions. Filled circles refer to vertices

from L(1)
πN while squares (diamonds) denote vertices from L(2)

πN and L(2)
NN (L(4)

NN ). Only those diagrams are shown which lead to
contributions to the potential beyond renormalization of various coupling constants. Only irreducible contributions of various
diagrams are taken into account in the potential as explained in the text.

see fig. 1, where the corresponding diagrams are shown.
Here and in what follows, we adopt the widely used power
counting rules for short-range operators which are based
on naive dimensional analysis, see refs. [24–28] for alter-
native suggestions and refs. [23, 29–32] for a related dis-
cussion. We further emphasize that diagrams shown in
fig. 1 do actually not correspond to Feynman graphs which
provide a graphical representation of the on-shell scat-
tering amplitude. Rather, they should be understood as
a schematic visualization of the irreducible parts of the
amplitude, i.e. those diagrams which do not correspond
to iterations of the dynamical equation. For a compre-
hensive discussion on the various ways to derive energy-
independent nuclear potentials and the associated unitary
ambiguities see refs. [20,33–37].

The static one-pion exchange potential (OPEP) is well
known and takes the form

V pp
1π = V nn

1π = V1π(Mπ0),

V np
1π = −V1π(Mπ0) + 2(−1)I+1V1π(Mπ±), (3)

where I denotes the total isospin of the two-nucleon sys-
tem and

V1π(Mπ) = − g2
A

4F 2
π

�σ1 · �q �σ2 · �q
q2 + M2

π

. (4)

Here and in what follows, �q = �p ′ − �p refers to the mo-
mentum transfer with �p and �p ′ being the initial and fi-
nal nucleon momenta in the center-of-mass system (cms),
while q ≡ |�q |. Further, �σi denotes the Pauli spin matrix of
nucleon i. Finally, gA, Fπ and Mπ0/Mπ± denote the axial-
vector coupling constant of the nucleon, pion decay con-
stant and neutral/charged pion mass, respectively. Notice
that the above expressions include the isospin-breaking
(IB) correction due to the different pion masses which is
known to be the strongest long-range IB contribution, see
refs. [38–43] for more details on the isospin dependence

of the NN force. Charge dependence of the pion-nucleon
coupling constant is consistent with zero [44] and for this
reason will not be taken into account in the present work.
The form of the longest-range NN force specified above
coincides with the one employed in the Nijmegen par-
tial wave analysis (NPWA) [45] which we use as input
for tuning the short-range interactions. Relativistic cor-
rections to the OPEP will be discussed at the end of this
section.

The chiral expansion of the two-pion exchange poten-
tial (TPEP) starts at next-to-leading order (NLO) which
corresponds to the chiral order Q2. Using the decomposi-
tion of the momentum-space TPEP

V2π = VC + τ1 · τ2 WC

+ [VS + τ1 · τ2 WS ] �σ1 · �σ2

+ [VT + τ1 · τ2 WT ] �σ1 · �q �σ2 · �q

+ [VLS + τ1 · τ2 WLS ] i(�σ1 + �σ2) · (�q × �k ), (5)

where �k = (�p + �p ′)/2, τi denote the isospin Pauli ma-
trices associated with the nucleon i, while VC,S,T,LS and
WC,S,T,LS are scalar functions which depend on the nu-
cleon momenta, the order-Q2 contributions take the form

W
(2)
C = − L(q)

384π2F 4
π

[
4M2

π(5g4
A − 4g2

A − 1)

+q2(23g4
A − 10g2

A − 1) +
48g4

AM4
π

4M2
π + q2

]
,

V
(2)
T = − 1

q2
V

(2)
S = − 3g4

A

64π2F 4
π

L(q),

V
(2)
C = V

(2)
LS = W

(2)
S = W

(2)
T = W

(2)
LS = 0. (6)
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The loop function L(q) is defined in dimensional regular-
ization (DR) via

L(q) =

√
4M2

π + q2

q
ln

√
4M2

π + q2 + q

2Mπ
. (7)

Notice that we only list here nonpolynomial in momenta
contributions while all polynomial terms are absorbed into
contact interactions which will be discussed below.

The corrections at order Q3 giving rise to the sublead-
ing TPEP have the form

V
(3)
C = − 3g2

A

16πF 4
π

[
2M2

π(2c1 − c3) − c3q
2
]
(2M2

π + q2)A(q),

W
(3)
T = − 1

q2
W

(3)
S = − g2

A

32πF 4
π

c4(4M2
π + q2)A(q),

V
(3)
S = V

(3)
T = V

(3)
LS = W

(3)
C = W

(3)
LS = 0, (8)

where ci are LECs associated with the subleading ππNN

vertices from L(1)
πN and the loop function A(q) is given in

DR by

A(q) =
1
2q

arctan
q

2Mπ
. (9)

At order Q4, i.e. N3LO, one encounters further corrections
to the TPEP emerging from the various one- and two-
loop diagrams which have been calculated in ref. [46]. The
contributions of the one-loop “bubble” diagrams to the
TPEP take a particularly simple form

V
(4)
C =

3
16π2F 4

π

L(q)

{[
c2

6
(4M2

π + q2) + c3(2M2
π + q2)

−4c1M
2
π

]2

+
c2
2

45
(4M2

π + q2)2
}

W
(4)
T = − 1

q2
W

(4)
S =

c2
4

96π2F 4
π

(4M2
π + q2)L(q). (10)

The remaining contributions from one- and two-loop di-
agrams can be most conveniently written using the (sub-
tracted) spectral representation of the TPEP

VC,S(q) = −2q6

π

∫ ∞

2Mπ

dμ
ρC,S(μ)

μ5(μ2 + q2)
,

VT (q) =
2q4

π

∫ ∞

2Mπ

dμ
ρT (μ)

μ3(μ2 + q2)
,

WC,S(q) = −2q6

π

∫ ∞

2Mπ

dμ
ηC,S(μ)

μ5(μ2 + q2)
,

WT (q) =
2q4

π

∫ ∞

2Mπ

dμ
ηT (μ)

μ3(μ2 + q2)
, (11)

where ρi and ηi denote the corresponding spectral func-
tions which are related to the potential via ρi(μ) =
Im Vi(iμ), ηi(μ) = ImWi(iμ). For the spectral functions

ρi(μ) (ηi(μ)) one finds [46]:

ρ
(4)
C (μ) = −3g4

A(μ2 − 2M2
π)

πμ(4Fπ)6

×
{

(M2
π − 2μ2)

[
2Mπ +

2M2
π − μ2

2μ
ln

μ + 2Mπ

μ − 2Mπ

]

+ 4g2
AMπ(2M2

π − μ2)
}

,

η
(4)
S (μ) = μ2η

(4)
T (μ) = −g4

A(μ2 − 4M2
π)

π(4Fπ)6

{(
M2

π − μ2

4

)

× ln
μ + 2Mπ

μ − 2Mπ
+ (1 + 2g2

A)μMπ

}
,

ρ
(4)
S (μ) = μ2ρ

(4)
T (μ) = −

{
g2

Ar3μ

8F 4
ππ

(d̄14 − d̄15)

− 2g6
Aμr3

(8πF 2
π )3

[
1
9
− J1 + J2

]}
,

η
(4)
C (μ) =

{
rt2

24F 4
πμπ

[
2(g2

A − 1)r2 − 3g2
At2

]
(d̄1 + d̄2)

+
r3

60F 4
πμπ

[
6(g2

A − 1)r2 − 5g2
At2

]
d̄3

− rM2
π

6F 4
πμπ

[
2(g2

A − 1)r2 − 3g2
At2

]
d̄5

− 1
92160F 6

πμ2π3

[
− 320(1 + 2g2

A)2M6
π

+240(1 + 6g2
A + 8g4

A)M4
πμ2

−60g2
A(8 + 15g2

A)M2
πμ4 + (−4 + 29g2

A

+122g4
A + 3g6

A)μ6
]
ln

2r + μ

2Mπ
− r

2700μ(8πF 2
π )3

×
[
− 16(171 + 2g2

A(1 + g2
A)(327 + 49g2

A))M4
π

+ 4(−73 + 1748g2
A + 2549g4

A + 726g6
A)M2

πμ2

−(−64 + 389g2
A + 1782g4

A + 1093g6
A)μ4

]

+
2r

3μ(8πF 2
π )3

[
g6

At4J1 − 2g4
A(2g2

A − 1)r2t2J2

]}
,

(12)

where we have introduced the abbreviations

r =
1
2

√
μ2 − 4M2

π , t =
√

μ2 − 2M2
π , (13)

and

J1 =
∫ 1

0

dx

{
M2

π

r2x2
−

(
1 +

M2
π

r2x2

)3/2

× ln
rx +

√
M2

π + r2x2

Mπ

}
,

J2 =
∫ 1

0

dxx2

{
M2

π

r2x2
−

(
1 +

M2
π

r2x2

)3/2

× ln
rx +

√
M2

π + r2x2

Mπ

}
. (14)
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Here and in what follows, we use the scale-independent
LECs d̄1, d̄2, d̄3, d̄5, d̄14 and d̄15 defined in [47]. One also
has to account for relativistic corrections to the TPEP
which will be discussed at the end of this section.

The short-range part of the chiral potential involves
in the isospin limit two derivative-less interactions con-
tributing at leading order (LO), seven terms involving
two derivatives at next-to-leading order (NLO) and fif-
teen terms involving four derivatives at N3LO. For isospin-
breaking contact interactions, we employ here only the
leading derivative-less terms which give rise to charge in-
dependence and charge symmetry breaking in the 1S0

NN phase shift. Notice that at N3LO, one, strictly speak-
ing, also needs to take into account IB TPEP as well as
the πγ-exchange potential. Given that we use the NPWA
rather than experimental data as input to determine vari-
ous LECs accompanying short-range interactions, we em-
ploy here the same treatment of IB effects as used by the
Nijmegen group. Specifically, the only sources of (finite-
range) IB contributions to the NN force are given by the
OPEP, see eq. (3) and the two derivative-less IB contact
interactions. This is also exactly the same procedure as
the one employed in our analysis reported in ref. [16]. The
contact interactions used in the present work yield the
following contributions to the NN potential in the partial-
wave basis

〈1S0, np|V np
cont|1S0, np〉 = C̃np

1S0 + C1S0(p2 + p′2)

+D1
1S0 p2 p′2 + D2

1S0(p
4 + p′4),

〈1S0, pp|V pp
cont|1S0, pp〉 = C̃pp

1S0 + C1S0(p2 + p′2)

+D1
1S0 p2 p′2 + D2

1S0(p
4 + p′4),

〈1S0, nn|V nn
cont|1S0, nn〉 = C̃nn

1S0 + C1S0(p2 + p′2)

+D1
1S0 p2 p′2 + D2

1S0(p
4 + p′4),

〈3S1|Vcont|3S1〉 = C̃3S1 + C3S1(p2 + p′2)

+D1
3S1 p2 p′2 + D2

3S1(p
4 + p′4),

〈1P1|Vcont|1P1〉 = C1P1 p p′ + D1P1 p p′(p2 + p′2),

〈3P1|Vcont|3P1〉 = C3P1 p p′ + D3P1 p p′(p2 + p′2),

〈3P0|Vcont|3P0〉 = C3P0 p p′ + D3P0 p p′(p2 + p′2),

〈3P2|Vcont|3P2〉 = C3P2 p p′ + D3P2 p p′(p2 + p′2),

〈1D2|Vcont|1D2〉 = D1D2 p2 p′2,

〈3D2|Vcont|3D2〉 = D3D2 p2 p′2,

〈3D1|Vcont|3D1〉 = D3D1 p2 p′2,

〈3D3|Vcont|3D3〉 = D3D3 p2 p′2,

〈3S1|Vcont|3D1〉 = C3D1−3S1 p2 + D1
3D1−3S1 p2 p′2

+D2
3D1−3S1 p4,

〈3D1|Vcont|3S1〉 = C3D1−3S1 p′2 + D1
3D1−3S1 p2 p′2

+D2
3D1−3S1 p′4,

〈3P2|Vcont|3F2〉 = D3F2−3P2 p3 p′,

〈3F2|Vcont|3P2〉 = D3F2−3P2 p p′3, (15)

where C̃i, C̃np
i , C̃pp

i , C̃nn
i , Ci and Di denote the corre-

sponding LECs. The relation between these LECs and the
ones corresponding to the operator form of the short-range
potential can be found in eq. (2.6) of ref. [16]. Notice fur-
ther that we do not show explicitly the pion mass depen-
dence of various contact interactions.

Finally, let us discuss the relativistic corrections to the
potential which according to our power counting scheme
start to contribute at N3LO. Notice that following ref. [48],
we treat the nucleon mass as a heavier scale as compared
with the breakdown scale Λb by counting Q/mN ∼ Q2/Λ2

b .
The relativistic corrections are scheme-dependent or, more
precisely, depend on the employed form of the dynam-
ical equation and the choice of unitary transformations
as explained in detail in ref. [49]. Contrary to the static
N3LO contributions, the results for the 1/m2

N -corrections
to the OPEP and 1/mN -corrections to the TPEP are not
uniquely determined by the renormalizability requirement
of the nuclear forces [50] and depend on two arbitrary pa-
rameters, called β̄8,9 in that work, which correspond to
the unitary ambiguity of the potential and are related to
the parameters μ and ν of ref. [49] via

μ = 4β̄9 + 1,

ν = 2β̄8. (16)

Here and in what follows, we employ the “minimal non-
locality” choice of the potential corresponding to setting
μ = 0 and ν = 1/2 or, equivalently, β̄8 = 1/4, β̄9 = −1/4
(see footnote2). This particular choice implies that the
only 1/m2

N -corrections to the OPEP stem from account-
ing for the relativistic normalization of the nucleon field
operators. Using the relativistic Schrödinger equation for
NN scattering of the form

[
2
√

p2 + m2
N + V

]
Ψ = 2

√
k2 + m2

NΨ, (17)

where mN = mp for the proton-proton (pp), mN = mn

for the neutron-neutron (nn) and mN = 2mpmn/(mp +
mn) for the neutron-proton (np) case and k denotes the
momentum corresponding to the energy eigenvalue E, the
full nonstatic expression for the OPEP takes the form

V1π =
mN

E0
V static

1π

mN

E0

=

(
1 − p2 + p′2

2m2
N

+ O(m−4
N )

)
V static

1π , (18)

where E0 =
√

p2 + m2
N is an operator. Notice that here

and in what follows, we use the notation p ≡ |�p |, p′ ≡ |�p ′|
and q ≡ |�q |. The corresponding 1/mN -corrections to the

2 We correct here a misprint in eq. (4.24) of ref. [50], where
the “minimal nonlocality” choice was specified by β̄8 = 1/4,
β̄9 = 0.
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TPEP read [49]3

V
(4)
C =

3g4
A

512πmNF 4
π

{
2M5

π

4M2
π + q2

− 3(4M4
π − q4)A(q)

}
,

W
(4)
C =

g2
A

128πmNF 4
π

{
3g2

AM5
π

4M2
π + q2

−
[
4M2

π + 2q2

−g2
A

(
7M2

π +
9
2
q2

)]
(2M2

π + q2)A(q)

}
,

V
(4)
T = − 1

q2
V

(4)
S =

9g4
A

512πmNF 4
π

(
4M2

π +
3
2
q2

)
A(q),

W
(4)
T = − 1

q2
W

(4)
S = − g2

A

256πmNF 4
π

[
8M2

π + 2q2

−g2
A

(
4M2

π +
3
2
q2

)]
A(q),

V
(4)
LS = − 3g4

A

64πmNF 4
π

(2M2
π + q2)A(q),

W
(4)
LS = −g2

A(1 − g2
A)

64πmNF 4
π

(4M2
π + q2)A(q). (19)

It is customary to rewrite the relativistic Schrödinger
equation (17) in the equivalent nonrelativistic form [49]

[
p2

mN
+ Ṽ

]
Ψ ′ =

k2

mN
Ψ ′, (20)

where the potential operator Ṽ is given by

Ṽ =

{√
p2 + m2

N

2mN
, V

}
+

V 2

4mN
, (21)

and {, } denotes the anti-commutator. This implies, in par-
ticular, that the 1/mN -corrections to the TPEP receive
further contributions induced by the second term in the
right-hand side of the above equation, V 2

1π/(4mN ), which
have the form

δV
(4)
C =

3g4
A

512πmNF 4
π

(2M2
π + q2)2A(q),

δW
(4)
C = − g4

A

256πmNF 4
π

(2M2
π + q2)2A(q),

δV
(4)
T = − 1

q2
δV

(4)
S = − 3g4

A

1024πmNF 4
π

(4M2
π + q2)A(q),

δW
(4)
T = − 1

q2
δW

(4)
S =

g4
A

512πmNF 4
π

(4M2
π + q2)A(q),

(22)

and need to be added to the expressions in eq. (19). It is
this form of the Schrödinger equation which was used in

3 Notice that there are misprints in eq. (2.23) of ref. [16] for

V
(4)

T and W
(4)
T,S .

the NPWA and is employed in the present analysis. We
refer the reader to appendix A for more details on the
kinematics and notations. To summarize, the relativistic
corrections to the NN potential at N3LO in the cms em-
ployed in the present work consist of:

– 1/mN -corrections to the static TPEP according to
eqs. (19) and (22);

– O(m−2
N )-corrections to the static OPEP and the re-

sulting TPEP according to eqs. (18) and (21),
{

mN

2E0
, V static

1π + V2π

}
− (V static

1π + V2π). (23)

This particular choice is appropriate at the order we
are working and is well suited for the local regular-
ization of the long-range potentials employed in our
analysis, see the next section for more details. Notice
that the relativistic corrections to the contact interac-
tions in the cms have the same form as the static terms
and thus need not to be considered separately.

We emphasize that we also included the leading 1/mN -
corrections emerging from triangle two-pion exchange di-
agrams involving subleading πN vertices, i.e. proportional
to ci. The corresponding expressions are not affected by
unitary ambiguity of the potential and can be found in
ref. [46]. While these contributions appear nominally at
next-to-next-to-next-to-next-to-leading order in the chi-
ral expansion within the employed power counting scheme,
the resulting potentials are known to be rather strong, pre-
sumably due to the LECs c2,3,4 being numerically large.
We have checked that neglecting those terms does not sub-
stantially affect the quality of the fits but would result in
a smaller range of cutoffs. Finally, notice that similar to
refs. [16,17], we do not explicitly include the leading three-
pion exchange potential which is known to be weak.

3 Regularization

Nuclear potentials derived in chiral EFT generate ul-
traviolet (UV) divergences once substituted into the
Lippmann-Schwinger (LS) equation. The appearance of
UV divergences in loop diagrams is an intrinsic feature
of any EFT which can be traced back to the derivative
expansion of the effective Lagrangian. While perturbative
calculations of, e.g., pion-pion or pion-nucleon scattering
within chiral perturbation theory are usually organized
in such a way that all UV divergences at a given order
are absorbable into redefinition of the available LECs, the
situation is different for nucleon-nucleon scattering de-
scribed in terms of nonperturbative solution of the LS
equation. While it is possible to formulate a renormal-
izable approach to NN scattering with nonperturbative
treatment of the OPEP [31, 51, 52], a much simpler and
commonly adopted way to renormalize the LS equation is
based on introducing a finite UV cutoff. (Implicit) renor-
malization of the NN amplitude is then achieved by tuning
the (bare) LECs accompanying the contact interactions
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to experimental data or phase shifts. One advantage of
such an approach, beyond its simplicity, is the ability to
combine the resulting nuclear potentials with the avail-
able few- and many-body machinery which allows one to
access observables beyond the NN system. The obvious
disadvantage compared to the renormalizable framework
suggested in ref. [31] is the appearance of finite-cutoff arte-
facts as manifested, e.g., in a residual cutoff dependence of
nuclear observables. This feature is unavoidable in calcu-
lations within such an approach (unless one is able to sub-
tract all divergent integrals generated by iterations of the
chiral potentials in the LS equation). As a consequence,
the UV momentum-space cutoff Λ has to be kept finite and
(ideally) of the order of the pertinent breakdown scale in
the problem [23,29,30,53].

In practice, one is rather limited with respect to the
range of cutoff values since choosing Λ ∼ Mρ or larger
was already found to result in spurious deeply bound
states [16]. While such unphysical deeply bound state do
not affect low-energy observables, they do drastically com-
plicate applications to three- and more-nucleon systems.
For this reason, ref. [16] has employed the cutoff range of
Λ = 450 . . . 600MeV while the Idaho N3LO potential is
available for two cutoff values only, namely Λ = 500MeV
and Λ = 600MeV [17, 20]. We further emphasize that
lattice spacings employed in recent nuclear lattice simu-
lations of refs. [54–59] correspond to even smaller cutoff
values.

Given the relatively low values of Λ, it is clearly de-
sirable, in order to increase the accuracy and applicabil-
ity range of nuclear chiral EFT, to reduce the amount
of finite-cutoff artefacts, see ref. [60] for a recent lattice
EFT work in a similar spirit, or at least to employ regu-
larization which avoids introducing unnecessary artefacts.
In the following, we will argue that the momentum-space
regularization used in the N3LO potentials of refs. [16,17]
does induce certain kinds of artefacts which can be eas-
ily avoided by carrying out regularization in coordinate
space as used recently in the construction of the local
chiral NN potentials up to next-to-next-to-leading order
(N2LO) [61,62].

Chiral nuclear forces involve generally two distinct
kinds of contributions: first, at large distances the po-
tential is governed by contributions emerging from pion
exchanges which are unambiguously4 determined by the
chiral symmetry of QCD and experimental information on
the pion-nucleon system needed to pin down the relevant
LECs. Secondly, the short-range part of the potential is
parametrized by all possible contact interactions with in-
creasing number of derivatives. It is desirable to introduce
regularization in such a way that the long-range part of
the interaction including especially the OPEP, which is re-
sponsible for left-hand cuts in the partial-wave scattering

4 Strictly speaking, even the long-range tail of the potential is
scheme-dependent as it can be affected by unitary transforma-
tions. Notice, however, that unitary ambiguity of the chiral nu-
clear forces was found to be strongly reduced in the static limit
if one demands that the corresponding potentials are renormal-
izable [36].

Im E

Re EEE2

Fig. 2. Singularity structure of the partial-wave two-nucleon
scattering amplitude in the complex energy plane. The solid
dot indicates the position of the S-wave (virtual) bound state.
Elastic unitarity is satisfied on the right-hand cut, also called
unitarity cut. Left-hand cuts are caused by exchange processes
in the potential. The first and second left-hand cuts due to one-
and two-pion exchange start at laboratory energy of Eπ =
−M2

π/(2mN ) ∼ 10MeV and E2π = −2M2
π/mN ∼ 40MeV,

respectively.

amplitude as visualized in fig. 2 and thus governs near-
threshold energy behavior of the S-matrix, is not affected
by the regulator. Notice that the near-threshold left-hand
singularities of the amplitude can be tested, e.g., via the
low-energy theorems [30,63].

The standard implementation of the regulator used,
e.g., in refs. [16,17] is as follows:

V (�p ′, �p ) → Vreg(�p ′, �p ) = V (�p ′, �p ) exp
(
−p′m + pm

Λm

)
,

(24)
where the power m is chosen sufficiently large in order that
the cutoff artefacts V (�p ′, �p )×O((Q/Λ)m) are beyond the
chiral order one is working at. Specifically, ref. [16] used
m = 6 while ref. [17] employed different powers m ≤ 6 for
different terms in the potential, presumably in order to
optimize the quality of the fit. It is clear that the multi-
plicative regulator introduced above leads to distortions of
the analytic structure of the partial-wave amplitude near
threshold as it affects the discontinuity across the left-
hand cuts, see also refs. [64, 65] for recent studies of NN
scattering which explicitly exploit the analytic structure
of the amplitude. While such distortions are small if Λ
can be chosen sufficiently large, they can lead to sizable
effects for the commonly adopted choices of Λ ∼ 500MeV.
It is easy to avoid this unpleasant feature by exploiting the
fact that long-range potentials derived in chiral EFT are
nearly local, i.e. depend only on momentum transfer �q. In
fact, the only source of nonlocality is given by relativistic
corrections which, in the power counting scheme we are
using, start to appear at N3LO, see the previous section.
The feature of locality naturally suggests to apply regu-
larization in coordinate space similar to what was done in
refs. [61, 62] by cutting off short-range parts of the pion-
exchange potentials, for which chiral expansion does not
converge, see ref. [66] for a related discussion:

Vlong-range(�r ) → V reg
long-range(�r ) = Vlong-range(�r )f

( r

R

)
,

(25)
where the regulator function f(x) is chosen such that its
value goes to 0 (1) sufficiently fast for x → 0 (expo-
nentially fast for x � 1). It is instructive to write this
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regularization in momentum space,

V (�q ) → V reg(�q ) = V (�q ) −
∫

d3l

(2π)3
V (�l ) FT�q−�l [1 − f ],

(26)
where FT stays for the Fourier-Transform. Given that
FT[1 − f ] is a short-range operator, the second term in
the right-hand side of the above equation does not in-
duce any long-range contributions. This is in contrast to
the procedure specified in eq. (24), where long-range terms
are induced by regularization (albeit suppressed by inverse
powers of the cutoff Λ). Notice further that the suggested
regularization is qualitatively similar to the well-known
Pauli-Villars regularization.

As will be shown in the next section, the above choice
of the regulator makes the additional SFR of the pion ex-
change contributions obsolete. This is a particularly wel-
come feature in view of the fact that the expressions for the
three-nucleon force at N3LO [50,67,68] are only available
in the framework of DR which corresponds to choosing
an infinitely large cutoff in the spectral function repre-
sentation. Notice further that recent calculations of the
three-nucleon force beyond N3LO [10, 69] are also car-
ried out in the framework of DR. The SFR was origi-
nally introduced in refs. [18, 19] as an attempt to avoid
unnaturally strong attraction generated by the subleading
TPEP in the isoscalar central channel [33] caused by short-
range components in the spectral representation. The SFR
framework was used to construct the N3LO potential of
ref. [16]. Notice, however, that in spite of employing the
SFR, it was necessary to set the LEC c3, which governs
the isoscalar part of the N2LO TPEP, to its lowest in mag-
nitude value still compatible with πN scattering in order
to avoid the appearance of deeply bound states.

We are now in the position to specify the regulator
function f(r/R), for which the choice f(r/R) = 1 −
exp(−(r/R)4) was adopted in refs. [61,62]. Given that DR
expressions for TPEP at N2LO behave at short distances
as 1/r6, such a regulator is insufficient to make the DR
potential nonsingular and can only be used in combina-
tion with the SFR which makes the TPEP less singular.
Notice further that such a regulator induces oscillations in
momentum-space matrix elements of the potential V (�q )
for large values of q which may represent a considerable
complication for numerical applications. In order to avoid
this unpleasant feature, the regulator function can be cho-
sen in the form

f
( r

R

)
=

[
1 − exp

(
− r2

R2

)]n

, (27)

where the exponent n has to be taken sufficiently large.
It is necessary to choose n = 4 or larger in order to make
the regularized expressions for the DR TPEP at N3LO
vanishing in the origin, but we found that larger values
of n lead to more stable numerical results when doing
calculations in momentum space5. Here and in what fol-
lows, we make the choice n = 6. For contact interactions,

5 Given that locally regularized potentials V (�q ) show only
a power-law decrease for high values of momentum transfer

we employ the standard nonlocal regulator specified in
eq. (24) and set m = 2 so that the regulator is again of a
Gaussian type. In order to have a single cutoff scale, we
will relate the coordinate- and momentum-space cutoffs
R and Λ by setting Λ = 2R−1 motivated by the relation
FTq[exp(−r2/R2)] ∝ exp(−q2R2/4). We will show below
that the results of our analysis depend little on specific
details of the regulator.

4 Fits and results for the phase shifts

Having specified the regularization, we now describe the
fit procedure and show our results for phase shifts. We
begin with specifying the values of the LECs and masses
that enter the potentials. Here and in what follows, we use
mp = 938.272MeV, mn = 939.565MeV for the nucleon
masses and Mπ± = 139.57MeV and Mπ0 = 134.98MeV
for the charged and neutral pion masses, respectively. For
the average pion mass which enters the expressions for the
TPEP the value Mπ = 138.03MeV is adopted. Further,
we use the values Fπ = 92.4MeV and gA = 1.267 for the
pion decay and nucleon axial coupling constants. Start-
ing from NLO, one needs to account for the Goldberger-
Treiman discrepancy which can be achieved via the re-
placement

gA → gA − 2d18M
2
π , (28)

where d18 is a LEC from the sub-subleading pion-nucleon
effective Lagrangian. Following [16], we adopt the larger
value gA = 1.29 instead of gA = 1.267 in order to account
for the Goldberger-Treiman discrepancy in the expressions
for the OPEP and, at N3LO, also for the leading TPEP.
Using the Goldberger-Treiman relation gπN = gAmN/Fπ,
this value of gA leads to g2

πN/(4π) = 13.67 which is con-
sistent with the recent determination via the Goldberger-
Miyazawa-Oehme sum rule [70], g2

πN/(4π) = 13.69± 0.20,
as well as with the older determinations from NN [44] and
πN [71] scattering data.

It remains to specify the πN LECs ci and di which
enter the TPEP at N3LO. In table 1, we list the values
of the ci’s adopted in the N3LO potentials of refs. [16,17]
and in the current work together with the empirical values
determined from pion-nucleon scattering inside the Man-
delstam triangle (fit 1). Using this unphysical kinematics
in combination with dispersion relations has the advan-
tage that the chiral expansion converges faster than in the
physical region. Thus, one expects the determined LECs
to have smaller theoretical uncertainties due to truncation
of the chiral expansion as compared to fits in the physical
region. For the LEC c2, which could not be reliably deter-
mined in [72], we give the value from the order Q3 heavy-
baryon calculation of ref. [47]. We emphasize that several
more recent determinations of these LECs from πN scat-
tering up to order Q4 in the heavy-baryon as well as mani-
festly covariant formulations of chiral perturbation theory

q, much higher virtual momenta are involved in solving the
LS equation as compared to the nonlocal chiral potentials of
refs. [16,17].
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Table 1. Values of the LECs ci in units of GeV−1 used in the various N3LO NN potentials in comparison with the empirically
determined values from πN scattering as described in the text.

LEC N3LO potential of ref. [17] N3LO potential of ref. [16] This work Empirical

c1 −0.81 −0.81 −0.81 −0.81 ± 0.15 [72]

c2 2.80(a) 3.28 3.28 3.28 ± 0.23 [47]

c3 −3.20(a) −3.40(b) −4.69 −4.69 ± 1.34 [72]

c4 5.40(a) 3.40 3.40 3.40 ± 0.04 [72]

(a)
Fit parameter.

(b)
Larger in magnitude values were found to lead to spurious deeply bound states.

are available, see, e.g., [69, 73–76]. In addition, attempts
were made to determine the LECs c1,3,4 from nucleon-
nucleon scattering data based on the two-pion exchange
potential calculated at N2LO [77–82] and N3LO [17]. In
particular, the values found in refs. [77, 79, 82] are con-
sistent, within the quoted uncertainties, with the results
obtained in pion-nucleon scattering. Notice, however, that
none of these studies have addressed the question of the
systematic theoretical uncertainties, in particular due to
truncation of the chiral expansion for the potential at a
given order. Accordingly, the interpretation of these find-
ings is not completely clear. Very recently, ref. [83] has
reported the determination of the LECs ci from periph-
eral NN scattering using the N2LO representation of the
two-pion exchange potential. The c4 value found in that
work deviates significantly from its empirical value. Again,
the systematic uncertainties associated with the adopted
way of fitting only peripheral partial waves and with the
truncation of the chiral expansion are not quantified in
that analysis. Finally, for the LECs di from the order-Q3

effective pion-nucleon Lagrangian which contribute to the
N3LO TPEP we adopt, following refs. [16, 17], the cen-
tral values from fit 1 to πN phase shift given in ref. [47],
namely

d̄1 + d̄2 = 3.06GeV−2, d̄3 = −3.27GeV−2,

d̄5 = 0.45GeV−2, d̄14 − d̄15 = −5.65GeV−2.

(29)

For the regulator R, we employ the same range as used in
the local versions of the N2LO NN potential of ref. [61],
namely R = 0.8 . . . 1.2 fm. Specifically, we will carry out
fits for five different values of R, namely R = 0.8 fm,
R = 0.9 fm, R = 1.0 fm, R = 1.1 fm and R = 1.2 fm.
Notice that the smallest value of the cutoff R, R = 0.8 fm,
coincides with the estimated distance at which the chi-
ral expansion of the NN potential is expected to break
down [66]. When transformed to momentum space using
the relation Λ = 2R−1 as motivated in the previous sec-
tion, the employed cutoff range corresponds to the range
of Λ � 500 . . . 330MeV.

Following the procedure of the NPWA [45] which we
use as input for our calculations, we fit all isospin-1
channels to pp phase shifts, which are accurately deter-
mined from the available scattering data, and generate
np and nn phase shifts (with the exception of the 1S0

partial wave) by using the appropriate kinematical rela-
tions, see eqs. (A.2), (A.3) and (A.4), taking into account
the isospin-breaking corrections to the OPEP due to the
different pion masses, see eq. (3), and switching off the
long-range electromagnetic interactions6. More precisely,
pp phase shifts of ref. [45], which we use as input in our
fits, actually correspond to phase shifts of the electro-
magnetic plus nuclear interaction with respect to electro-
magnetic wave functions, i.e. δEM

EM+N in the notation of
ref. [45]. The dominant contributions to the long-range
electromagnetic interaction are well known and include
the usual static Coulomb potential, the leading relativis-
tic correction to the Coulomb potential, the magnetic mo-
ment interaction and the vacuum polarization potential,
see, e.g., [16, 45] and references therein for more details
and explicit expressions. Notice that the static Coulomb
potential in combination with the leading relativistic cor-
rection is often referred to as the modified or relativistic
Coulomb interaction. The NPWA employs the approxi-
mation δEM

EM+N ≈ δC
C+N for all pp channels except 1S0,

where C means that the electromagnetic interaction is ap-
proximated by the Coulomb potential. For the 1S0 partial
wave, the approximate relation between the phase shifts
δEM
EM+N published in [45] and δC

C+N can be obtained us-
ing the distorted wave Born approximation. The resulting
fairly model-independent shifts are tabulated in ref. [84]
and appear to be negligibly small for energies larger than
Elab ∼ 30MeV. Throughout this work, we use pp phase
shifts corresponding to the modified Coulomb plus nuclear
interaction with respect to the modified Coulomb wave
functions and employ the corrections given in ref. [84] to
relate these phase shifts to the ones of the NPWA [45]
in the 1S0 partial wave. For the np case, the calculated
and shown phase shifts are that of the nuclear interac-
tion with respect to Riccati-Bessel functions. Notice that
np phase shifts of the NPWA [45] actually correspond to
δMM
MM+N since the electromagnetic interaction in that case

6 Notice that such a “minimalistic” treatment of IB effects
in the present analysis is dictated by using the NPWA results
rather than NN experimental data as input for our fits. In
particular, we do not take into account the known IB two-pion
exchange contributions since they would induce shifts δnp-δpp

incompatible with the results of ref. [45]. A more complete
treatment of IB corrections using NN experimental data is left
for a future work.
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is entirely given by the magnetic moment (MM) interac-
tion within the NPWA. It is well known that the approxi-
mation [85] δEM

EM+N ≈ δN is rather accurate for all channels
except for the 3S1 partial wave [85]. We will employ this
standard approximation for all np partial waves in order
to directly compare our phase shifts with the ones of the
NPWA [45]. It should be understood that effects of the
magnetic moment interaction in δMM

MM+N in the 3S1 chan-
nel of the NPWA [45] are mimicked by contact interactions
in the potential when we calculate δN . We emphasize that
our choice for the phase shifts throughout this work is the
same as the one adopted, e.g., in refs. [17,86].

For each value of the cutoff R, we determine the
LECs accompanying the short-range operators specified
in eq. (15) from a fit to np and pp phase shifts of the
NPWA [45]. Specifically, we have in total 4 LECs at LO
(C̃3S1, C̃np

1S0, C̃pp
1S0 and C̃nn

1S0), 11 LECs at NLO and N2LO
(C̃3S1, C̃np

1S0, C̃pp
1S0, C̃nn

1S0 and Ci) and 26 LECs at N3LO
(C̃3S1, C̃np

1S0, C̃pp
1S0, C̃nn

1S0, Ci and Di). Notice that while
it is not necessary to account for isospin breaking at LO
from the point of view of power counting, we decided to
include the same isospin-breaking corrections in order to
be consistent with the procedure of the NPWA and to
allow for a meaningful comparison of results at differ-
ent orders. The fits are carried out using the same ener-
gies as employed in the multi-energy partial wave analysis
of the Nijmegen group, namely Elab = 1, 5, 10, 25, 50,
100, 150 and 200MeV7. Specifically, we use the energies
Elab ≤ 25MeV at LO, Elab ≤ 100MeV at NLO and N2LO
and Elab ≤ 200MeV at N3LO. The results for phase shifts
at higher energies are thus to be regarded as predictions.

At N3LO, we found that fits in the 3S1-3D1 become
unstable, which manifests itself in the appearance of dif-
ferent solutions which describe equally well the 3S1 and
3D1 phase shifts and the mixing angle ε1. This feature be-
comes especially disturbing for the hardest cutoff choices
of R = 0.8 fm and R = 0.9 fm and indicates that 8 un-
known LECs in this channel offer too much flexibility in
the description of the phase shifts and the mixing an-
gle. In addition to requiring that the resulting LECs are
of natural size, we decided to impose further constraints
to stabilize the fits in this channel. In particular, we de-
mand that the deuteron binding energy is correctly re-
produced and discard solutions which lead to unrealis-
tic values of the D-state probability in the deuteron or
show a too strong violation of the Wigner SU(4) sym-
metry which implies the relation C̃1S0 � C̃3S1 [87], see
also ref. [88]. It should be emphasized that the deuteron
D-state probability PD is not a measurable quantity and
can be changed by means of a unitary transformation [89].
Modern phenomenological NN potentials typically yield
the values of PD in the range of PD = 4 . . . 6%. In par-
ticular, the AV18 [85], Nijmegen I and II and Reid93 [90]
potentials have PD = 5.76%, PD = 5.66% PD = 5.64%
and PD = 5.70%, respectively, while the CD-Bonn po-

7 We will also include the energies of 250 and 300 MeV when
discussing the quality of the fits below.

tential [86] leads to a smaller value of PD = 4.85%, see
ref. [91] for a related discussion. Furthermore, the chiral
N3LO potential of refs. [17] yields PD = 4.51% while the
ones of ref. [16] lead to even smaller values. It is conceiv-
able that NN potentials corresponding to the choice of uni-
tary transformation leading to values of PD very different
from the ones listed above would require strong many-
body forces and exchange currents, the feature which is
certainly worrisome in the context of effective field the-
ory but also from the computational point of view, see,
e.g., the discussion in ref. [92]. Thus, we decided to intro-
duce the deuteron D-state probability PD = 5% ± 1% as
an additional “data” point in the fit. As for the second
constraint on the value of C̃3S1, we employ a simple “aug-
mented χ2” following the lines of ref. [93] to penalize those
values of C̃3S1 which are considerably different from the
ones of C̃1S0 for the same choice of the cutoff. In practice,
this is achieved by using

χ2
aug = χ2+χ2

prior, with χ2
prior =

(C̃3S1 − C̃1S0)2

(ΔC̃3S1)2
,

(30)
where we choose ΔC̃3S1 = C̃1S0/4. Notice that this addi-
tional constraint is, in fact, only active for the two hardest
choices of the cutoff as the unconstrained fits in other cases
already lead to C̃3S1 � C̃1S0. For example, the value for
C̃3S1 resulting from the unconstrained fit with the cutoff
R = 1 fm appears to lie within 1% of the value of C̃1S0.
We also found that different choices ΔC̃3S1 = C̃1S0/2,
ΔC̃3S1 = C̃1S0/3, ΔC̃3S1 = C̃1S0/5 lead to negligibly
small differences in the resulting observables.

Having specified the details of the fitting procedure,
we are now in the position to discuss the results. In ta-
ble 2, we give the obtained values of the various LECs at
N3LO for different choices of the cutoff R. It is important
to keep in mind that the LECs correspond to bare quanti-
ties and are expected to depend significantly on the chiral
order, employed regularization scheme and the choice of
the cutoff. Although the LECs at NLO and N2LO were
demonstrated in ref. [88] to be well described in terms of
resonance saturation by heavy-meson exchanges, it makes
generally little sense to directly compare the LECs ob-
tained by using different regularization schemes with each
other. For example, due to the choice of a Gaussian regu-
lator for contact interactions adopted in the present work,
the LECs Di contain contributions induced by contact in-
teractions at lower orders driven by the LECs C̃i and Ci.
A more meaningful comparison between the different ap-
proaches should rather be done at the level of observables
or, more generally, renormalized quantities. What is, how-
ever, important to verify is that the obtained LECs are of
a natural size. The natural size for the various LECs can
be roughly estimated as [16]

|C̃i| ∼
4π

F 2
π

, |Ci| ∼
4π

F 2
πΛ2

b

, |Di| ∼
4π

F 2
πΛ4

b

, (31)

where the factor of 4π emerges from the angular integra-
tion in the partial wave decomposition and Λb is the per-
tinent hard scale. If the scale Λb is identified with the
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Table 2. The LECs C̃pp
1S0, C̃nn

1S0, C̃np
1S0, C̃3S1, Ci and Di at N3LO for different values of the cutoff R. The values of the C̃i, Ci

and Di are given in units of 104 GeV−2, 104 GeV−4 and 104 GeV−6, respectively.

LEC R = 0.8 fm R = 0.9 fm R = 1.0 fm R = 1.1 fm R = 1.2 fm

C̃pp
1S0 0.2363 0.1648 0.1090 0.0574 0.0166

C̃nn
1S0 0.2352 0.1631 0.1070 0.0551 0.0140

C̃np
1S0 0.2328 0.1600 0.1035 0.0513 0.0100

C1S0 −0.0433 −0.0400 −0.1155 −0.2078 −0.3344

D1
1S0 3.0691 −1.8080 −6.9812 −13.3659 −21.9934

D2
1S0 0.6135 3.0136 6.4537 10.8060 16.5111

C3P0 1.0678 0.7812 0.5120 0.2645 0.0313

D3P0 −0.4030 0.6311 1.5809 2.5084 3.4432

C1P1 1.0068 0.8095 0.6926 0.6267 0.5930

D1P1 0.9480 1.6652 2.4623 3.4613 4.7819

C3P1 1.3413 1.1253 0.9667 0.8592 0.7865

D3P1 −0.7070 0.3656 1.4145 2.6058 4.1340

C̃3S1 0.2441 0.1688 0.1043 0.0513 0.0097

C3S1 −0.3292 −0.3844 −0.4256 −0.4868 −0.5790

D1
3S1 −4.5205 −8.0894 −12.3514 −17.5859 −23.6921

D2
3S1 3.8438 6.4034 9.2050 12.3977 15.7636

C3D1-3S1 0.3424 0.4092 0.5388 0.7298 0.9624

D1
3D1-3S1 0.8641 −0.3181 −2.0898 −4.3925 −7.3943

D2
3D1-3S1 −1.5054 −0.3157 1.6466 4.2798 8.0089

D3D1 1.4422 1.2225 1.1240 1.1446 1.1740

D1D2 1.3770 0.9617 0.4782 −0.1144 −0.8569

D3D2 0.6540 0.0259 −0.8805 −2.1386 −3.8116

C3P2 0.5639 0.3189 0.1418 0.0134 −0.0768

D3P2 −0.5008 −0.4398 −0.6095 −1.0773 −1.9421

D3F2-3P2 −0.1355 −0.2343 −0.4108 −0.6946 −1.1275

D3D3 −0.1655 −0.4103 −0.7289 −1.1377 −1.6564

employed ultraviolet cutoff Λ = 2R−1, the expected natu-
ral size of the LECs |C̃i|, |Ci| and |Di| is 0.15×104 GeV−2,
0.6 × 104 GeV−4 (1.4 × 104 GeV−4) and 2.5 × 104 GeV−6

(13 × 104 GeV−6), respectively, for the hardest (softest)
employed cutoff R = 0.8 fm (R = 1.2 fm). This would im-
ply that all obtained LECs are of a natural size. On the
other hand, as we will show in the next section, the ac-
tual breakdown scale Λb in our case appears to be some-
what larger than the UV cutoff Λ = 2R−1. In particu-
lar, we will use Λb = 400 . . . 600MeV, depending on the
employed value of R, for estimating the theoretical un-
certainty in sect. 7. This implies that the natural size of
the LECs |Ci| and |Di| is expected to be 0.4× 104 GeV−4

(0.9× 104 GeV−4) and 1.1× 104 GeV−6 (6× 104 GeV−6),
respectively, for the hardest (softest) cutoff choices. Also
for such an estimation, all LECs are of a natural size (with
the values of D1

3S1 appearing to be somewhat large in
magnitude).

In fig. 3, we show our results at different orders in the
chiral expansion for np phase shifts and mixing angles used
in the N3LO fit. Here, we restrict ourselves to one particu-
lar cutoff choice, namely R = 0.9 fm, in order to have not
too many lines in the plots. The cutoff dependence of our
results will be addressed in sects. 5 and 7. One clearly ob-

serves a good convergence pattern with the N3LO results
being in excellent agreement with the NPWA in the whole
considered range of energies. The convergence pattern is
in most cases qualitatively similar to the one reported in
ref. [16] although there are differences in certain chan-
nels. For example, for the 3P0 partial wave, the results at
NLO and N2LO of ref. [16] indicate too much repulsion
at higher energies while the opposite is observed in our
analysis. Still, these results are consistent with each other
within the estimated theoretical uncertainty at these or-
ders, see sect. 7 for more details. Concerning the N3LO
results, the improved NN potential of this work shows a
superior performance in the whole considered energy range
compared to the potential of ref. [16] as will be shown be-
low. We attribute this feature primarily to a better choice
of regularization, see sect. 3 for more details. We also em-
phasize that our N3LO results for peripheral, i.e. F- and
higher partial waves not shown in fig. 3 are similar to
the ones reported in refs. [16, 95]. In particular, we also
observe large relative deviations for F-waves at higher en-
ergies. For example, for the cutoff R = 0.9 fm, we find
δnp
3F2 = 3.1◦ at Elab = 250MeV to be compared with the

NPWA result δnp
3F2 = 1.4◦. Notice, however, that absolute

deviations from the NPWA for F-waves appear to be of
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Fig. 3. (Color online) Chiral expansion of the NN phase shifts in comparison with the NPWA [45] (solid dots) and the GWU
single-energy np partial wave analysis [94] (open triangles). Dotted, dashed (brown), dash-dotted (blue) and solid (red) lines
show the results at LO, NLO, N2LO and N3LO, respectively, calculated using the cutoff R = 0.9 fm. Only those partial waves
are shown which have been used in the fits at N3LO.

a similar size as the ones observed in low partial wave so
that there is no reason to expect the theoretical uncer-
tainty in low-energy observables to be dominated by the
discrepancies in F-waves. It is conceivable that the devia-
tions for F-waves will be largely reduced by the order-Q6

contact interactions.
It is desirable to have a quantitative criterium for com-

paring the accuracy of different potentials with each other.
Usually, this is achieved by calculating the χ2/datum for
the reproduction of the available np and pp scattering
data. Presently, we do not have the necessary machinery
to carry out such a calculation and reserve this task for a
future study. In the present work, we employ a simpler ap-
proach and calculate χ̃2/datum for the reproduction of the
phase shifts of the NPWA used as input in our analysis.
Here and in what follows, we will use a symbol χ̃2 for such
an approach in order to avoid a possible confusion with χ2

for the description of experimental data. Specifically, we
calculate χ̃2/datum at energies of Elab = 1, 5, 10, 25, 50,
100, 150, 200, 250 and 300MeV employed in the NPWA
and also in our fits. Unfortunately, the NPWA [45] only
provide statistical errors which do not include systematic
uncertainties. In order to have a meaningful definition of
χ̃2, we define the uncertainty for a given phase shift (or
mixing angle) δ in the channel X at a given energy as

ΔX = max
(
ΔNPWA

X ,
∣∣∣δNijmI

X − δNPWA
X

∣∣∣,∣∣∣δNijmII
X − δNPWA

X

∣∣∣,
∣∣∣δReid93

X − δNPWA
X

∣∣∣), (32)

where δNPWA
X and ΔNPWA

X refer to the phase shift (or mix-
ing angle) in the channel X and the corresponding statis-
tical error of the NPWA, respectively, while δNijmI

X , δNijmI
X

and δReid93
X denote the results based on the Nijmegen I, II

and Reid93 NN potentials of ref. [90]. These phenomeno-
logical potentials are constructed using the same database
as employed in the NPWA and have a nearly optimal
χ2/datum of 1.03. For this reason, they have, in fact, been
suggested as alternative partial wave analyses [90]. While
the above definition of uncertainties provides a reasonable
estimation, one should not overinterpret the resulting val-
ues for χ̃2/datum calculated based on the NPWA phase
shifts in the way specified above8. In particular, there is
no statistical interpretation of the value of χ̃2/datum. We,
nevertheless, still find this approach useful for the sake of
a simple comparative analysis of the accuracy of different
NN potentials. We also used the errors defined above in
all our fits.

In table 3 we show the χ̃2/datum for the description
of the Nijmegen np and pp phase shifts in those channels
which were used in the fit at N3LO, namely S-, P, and
D-waves and the mixing angles ε1 and ε2. As a test of our
approach, we first apply it to the CD-Bonn potential of
ref. [86]. The resulting values for χ̃2/datum clearly indi-
cate that this potential provides a very good description
of both the np and pp phase shifts of the NPWA in the
whole energy range. Notice that the CD-Bonn potential
was fitted to a considerably larger database as compared
to the NPWA. For the Idaho N3LO potentials of ref. [17],
the χ̃2/datum appears to be somewhat higher, especially
for the version with the cutoff Λ = 600MeV. Notice that

8 There is no obvious relation between χ̃2/datum for the de-
scription of NPWA phase shifts and that for the description
of real data. In particular, our simplistic approach does not
take into account the fact that peripheral partial waves are
less important for the description of low-energy observables.
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Table 3. χ̃2/datum for the description of the Nijmegen np and pp phase shifts [45] as described in the text. Only those channels
are included which have been used in the N3LO fits, namely the S-, P- and D-waves and the mixing angles ε1 and ε2.

Elab bin CD-Bonn Idaho N3LO N3LO of [16] Improved chiral potentials at N3LO, this work

(MeV) (500) (600) (550/600) R = 0.8 fm R = 0.9 fm R = 1.0 fm R = 1.1 fm R = 1.2 fm

Neutron-proton phase shifts

0–100 0.6 1.7 5.2 1.9 0.8 0.7 0.6 0.7 1.4

0–200 0.6 2.2 5.3 2.1 0.8 0.7 0.6 0.8 1.8

0–300 0.6 3.3 6.8 6.0 2.1 1.5 1.8 4.0 10.7

Proton-proton phase shifts

0–100 0.5 1.5(a) 6.7(a) 8.3 1.8 0.8 0.5 1.2 4.6

0–200 1.3 2.9(a) 11.7(a) 14.7 2.1 0.7 0.6 2.2 8.2

0–300 1.3 5.9(a) 30.0(a) 75.3 12.0 3.2 7.0 24.5 66.8

(a)
The 1S0 partial wave has not been taken into account as explained in the text.

we did not include the pp 1S0 phase shift when calcu-
lated the χ̃2/datum for the Idaho N3LO potentials. This
is because the authors of ref. [17] employed a more elab-
orated treatment of IB corrections as compared to the
NPWA. This is especially important for the splitting be-
tween the pp and np 1S0 phase shifts and would result
in a very large χ̃2/datum if the pp 1S0 phase would be
included. It is interesting to compare these findings with
χ2/datum for the reproduction of the real data. The val-
ues quoted in ref. [86] for the CD-Bonn potential, namely
χ2/datum = 1.02 for np and χ2/datum = 1.01 for pp data
below 350MeV and in ref. [17] for the two versions of the
Idaho potentials, namely χ2/datum = 1.1–1.3 for np and
χ2/datum = 1.5–2.1 for pp data below 290MeV, show
clearly the same qualitative trend. On the other hand, it
is clear that χ̃2/datum employed in our analysis is a much
more sensitive quantity and the values of χ̃2/datum ∼ 5
do still correspond to accurate description of real data.
In particular, deviations from the NPWA for D-waves or
the mixing angle ε2 are reflected in the calculated value of
χ̃2/datum while their effect on scattering observables at
low energy is suppressed due to their threshold behavior.

The results for χ̃2/datum for the improved chiral po-
tential of the present work at different values of the cutoff
R are listed in the last five columns of table 3. Given
that the softest cutoff R = 1.2 fm corresponds to the
momentum-space regulator of Λ ∼ 330MeV, the large
values of χ̃2/datum for this cutoff in the whole energy
range of Elab = 0–300MeV simply reflect the feature that
the potential is used at energies beyond its applicability
range. The same applies, to a lesser extent, to the cutoff
R = 1.1 fm which corresponds to the momentum-space
cutoff of Λ ∼ 360MeV. As expected, decreasing the value
of the coordinate-space cutoff R leads to a better descrip-
tion of the phase shifts. The improvement stops for the
hardest considered cutoff of R = 0.8 fm. Notice that the
corresponding momentum cutoff Λ ∼ 500MeV is consid-
erably larger than the one found in ref. [23], where the
TPEP was neglected. Our findings thus confirm the im-
portance of the two-pion exchange, see also refs. [77, 96]
for a related discussion. Altogether, the description of the

Table 4. χ̃2/datum for the description of the Nijmegen np
and pp phase shifts [45] as described in the text at different
orders in the chiral expansion for the cutoff R = 0.9 fm. Only
those channels are included which have been used in the N3LO
fits, namely the S-, P- and D-waves and the mixing angles ε1
and ε2.

Elab bin LO NLO N2LO N3LO

Neutron-proton phase shifts

0–100 360 31 4.5 0.7

0–200 480 63 21 0.7

Proton-proton phase shifts

0–100 5750 102 15 0.8

0–200 9150 560 130 0.7

np and pp phase shifts based on the improved N3LO in-
teractions is excellent for energies below 200MeV and,
for the optimal cutoff choice of R = 0.9 fm, even up to
Elab = 300MeV.

It is also interesting to compare the reproduction of
the Nijmegen phase shifts at different orders in the chiral
expansion. In table 4 we show the corresponding values of
χ̃2/datum for the cutoff R = 0.9 fm. The observed pattern
provides yet another indication that the chiral expansion
for the nuclear force converges well, see also fig. 3. It is
especially comforting to see the improvement when going
from NLO to N2LO which is entirely due to the subleading
TPEP. Notice that the number of adjustable parameters
is the same at NLO and N2LO. Last but not least, our
results seem to support the validity of Weinberg’s power
counting and do not indicate the need for its modification
as suggested, e.g., in refs. [25–27].

5 Cutoff dependence

We now address in some detail the residual cutoff de-
pendence of our results. As explained at the beginning
of sect. 3, the dependence of observables on the cutoff R
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Fig. 4. Cutoff dependence of the phase shifts calculated at N2LO (left panel) and N3LO (right panel). Dotted, dashed, dash-
dotted, solid and dash-double-dotted lines show the results obtained with the cutoffs R = 1.2 fm, R = 1.1 fm, R = 1.0 fm,
R = 0.9 fm and R = 0.8 fm, respectively. Only those partial waves are shown which have been used in the fits at N3LO. Solid
dots and open triangles correspond to the results of the NPWA [45] and the GWU single-energy np partial wave analysis [94].

is not completely removed in our calculations, see how-
ever ref. [31] for an alternative renormalizable approach.
The residual cutoff dependence can be viewed as an esti-
mation of effects of higher-order contact interactions be-
yond the truncation level of the potential, see, however,
the discussion in sect. 7. One, therefore, expects the resid-
ual cutoff dependence to reduce when going from LO to
NLO/N2LO and from NLO/N2LO to N3LO/N4LO. On
the other hand, the residual cutoff dependence at chiral
orders NLO and N2LO as well as N3LO and N4LO is ex-
pected to be of the same size. In fig. 4 we compare the
cutoff dependence of the S-, P- and D-wave phase shifts
and the mixing angles ε1 and ε2 at N2LO and N3LO. The
cutoff dependence at N3LO appears to be very weak in
all channels used in the fit. In particular, it is consider-
ably weaker than the one resulting from our N3LO poten-
tial [16] where a nonlocal exponential regulator was em-
ployed for the OPEP, TPEP and the contact interactions.

The new regularization scheme described in sect. 3 shows
a superior performance at higher energies and produces
only a small amount of artefacts (i.e. the residual cutoff
dependence) in the considered energy range.

To get more insights into the residual cutoff depen-
dence of phase shift δ in a given channel, we follow
the lines of ref. [97, 98] and plot in fig. 5 the quantity
|1−cot δR1(k)/ cot δR2(k)|, where R1 and R2 are two differ-
ent values of the cutoff, as function of the cms momentum
k. Specifically, we choose R1 = 0.9 fm and R2 = 1.0 fm and
restrict ourselves to the np 1S0, 3S1, 3P1 and 3P2 partial
waves which may serve as representative examples. First,
the resulting error plots demonstrate a very similar cutoff
dependence at NLO and N2LO which is to be expected
based on general arguments as discussed above. In addi-
tion, one observes that the cutoff dependence reduces sig-
nificantly in the whole range of momenta when going from
LO to NLO/N2LO and from NLO/N2LO to N3LO/N4LO.
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Fig. 5. (Color online) Error plots for np scattering in the 1S0,
3S1,

3P1 and 3P2 partial waves as explained in the text. Dotted,
dashed (brown), dash-dotted (blue) and solid (red) lines show the results at LO, NLO, N2LO and N3LO, respectively.

Notice that the appearance of dips in the plots at values of
k where the function 1−cot δR1(k)/ cot δR2(k) changes its
sign has no significance and should be ignored. Also, the
structures seen in the 3S1 partial wave for k ∼ 90MeV and
k ∼ 400MeV (1S0 partial wave for k ∼ 350 . . . 400MeV)
simply reflect the feature that cot(π/2) = 0 (cot(0) = ∞)
and should be ignored, too. Concerning the slope of the
curves at different orders, the error plots indicate the ap-
pearance of two different regimes: at low momenta well
below the pion mass, the slope does not change signifi-
cantly from order to order and the curves are nearly hor-
izontal. This is a qualitatively similar pattern to the one
reported in ref. [97]. To understand this feature, we re-
call that chiral expansion of the nuclear force is actually a
double expansion in powers of momenta and the pion mass
Mπ, see eq. (1). At low momenta, we expect the correc-
tions to be dominated by powers of Mπ/Λb and, therefore,
to be nearly independent on momenta. On the other hand,
at momenta above the pion mass, one may expect the cor-
rections to be dominated by powers of k/Λb. The increase
of the slope when going from LO to NLO/N2LO and from
NLO/N2LO to N3LO can be viewed as a self-consistency
check of the calculation and indicates that the theory is
properly renormalized, see refs. [23, 99] for more details.
Finally, we read off from the plots that the breakdown
scale Λb at N3LO, i.e. the momenta at which the N3LO
curves cross the ones of lower orders, is about ∼ 500MeV
for S-waves and even higher for P-waves. These observa-
tions are in line with our previous findings and, in partic-
ular, with the size of the LECs accompanying the corre-
sponding contact interactions which are listed in table 2.

We will use Λb = 400 . . . 600MeV, depending on the cut-
off R, in our estimation of the theoretical uncertainties in
sect. 7. It would be interesting to see whether and how
the explicit inclusion of the Δ(1232) degrees of freedom in
the effective Lagrangian will affects the breakdown scale
of the EFT expansion.

6 Deuteron properties

We now turn to the deuteron properties. First, as already
emphasized in sect. 4, we stress that we used the bind-
ing energy Bd = 2.224575MeV [100] to constrain the
fit. While this choice differs from our early work [16], it
is actually the standard procedure for all high-precision
phenomenological potentials such as the Nijmegen I, II,
Reid93, CD-Bonn and AV18 one. Also the N3LO poten-
tial of ref. [17] was tuned to reproduce the experimental
value of the deuteron binding energy. We anticipate that
relaxing this condition in the fits would have little impact
on few-nucleon observables.

In table 5, we collect various deuteron properties at
N3LO using different values of the cutoff R in comparison
with the results based on the CD-Bonn [86], N3LO Idaho
(500) [17] and N3LO (550/600) [16] potentials and with
empirical numbers. In all cases with the exception of the
N3LO Idaho potential, the deuteron binding energy is cal-
culated based on relativistic kinematics, see eq. (A.4) and
refs. [16, 86] for more details. We remind the reader that
the asymptotic S state normalization AS and the asymp-
totic D/S state ratio η are observable quantities which
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Table 5. Deuteron binding energy Bd, asymptotic S state normalization AS , asymptotic D/S state ratio η, radius rd and
quadrupole moment Q predicted by various NN potential in comparison with empirical information. Also shown is the D-state
probability PD. Notice that rd and Qd are calculated without taking into account meson-exchange current contributions and
relativistic corrections.

CD-Bonn, Idaho N3LO N3LO of [16] Improved chiral potentials at N3LO, this work Empirical

[86] (500), [17] (550/600) R = 0.8 fm R = 0.9 fm R = 1.0 fm R = 1.1 fm R = 1.2 fm

Bd (MeV) 2.2246(a) 2.2246(a) 2.2196 2.2246(a) 2.2246(a) 2.2246(a) 2.2246(a) 2.2246(a) 2.224575(9)

AS (fm−1/2) 0.8846 0.8843 0.8820 0.8843 0.8845 0.8845 0.8846 0.8846 0.8846(9)

η 0.0256 0.0256 0.0254 0.0255 0.0255 0.0256 0.0256 0.0256 0.0256(4)

rd (fm) 1.966 1.975 1.977 1.970 1.972 1.975 1.979 1.982 1.97535(85)

Q (fm2) 0.270 0.275 0.266 0.268 0.271 0.275 0.279 0.283 0.2859(3)

PD (%) 4.85 4.51 3.28 3.78 4.19 4.77 5.21 5.58

(a)
The deuteron binding energy has been taken as input in the fit.

can be extracted from the S-matrix at the deuteron pole
by means of analytic continuation, see [16] and references
therein. The empirical values for these quantities quoted
in table 5 are taken from refs. [101,102]. For the deuteron
radius rd, the quoted value corresponds to the so-called
deuteron structure radius which is defined as a square
root of the difference of the deuteron, proton and neu-
tron mean square charge radii and is taken from ref. [103].
It agrees well with the earlier result of rd = 1.971(5) fm
reported in ref. [104]. For the quadrupole moment Q, the
experimental value given in table 5 is from ref. [105].

Our predictions for AS , η and rd are in excellent agree-
ment with the empirical numbers. Notice that our calcula-
tion of rd and Q does not take into account relativistic and
exchange current contributions. For the radius rd, the cor-
responding corrections to r2

d were estimated in ref. [106] to
give 0.014 fm2 while other calculations quote even smaller
numbers. Thus, neglecting these contributions would af-
fect the results for rd at most at the level of 0.2% which is
below the residual cutoff variation ∼ 0.6% for this quan-
tity at N3LO.

For the quadrupole moment, our predictions underesti-
mate the experimental value similarly to what is observed
for other modern phenomenological potentials as well as
for the chiral N3LO potentials of refs. [16,17]. Notice that
the amount of underestimation is largest for the hardest
cutoff R = 0.8 fm and reduces strongly for the softest cut-
off R = 1.2 fm. We also emphasize that relativistic and me-
son exchange current corrections, which are not included
in our predictions, were estimated to increase the value of
Q by the amount of 0.010 fm2 [86] based on the Bonn one-
boson exchange model. This would bring our predictions
for the quadrupole moment in agreement with the exper-
imental value. This conclusion is also fully in line with
the results of ref. [107], where the contributions from the
relativistic corrections and one-pion exchange two-body
charge operator were estimated to be ΔQ � 0.008 fm2,
see also ref. [108] for a related recent work. Adding this
correction to our prediction yields Q = 0.278 . . . 0.291 fm2

in agreement with experiment. The residual cutoff depen-
dence of Q is to be removed by the leading short-range
two-body current. Its required contribution of the order

Table 6. Deuteron properties at various orders in the chiral
expansion for the cutoff R = 0.9 fm in comparison with empir-
ical values. For notation see table 5.

LO NLO N2LO N3LO Empirical

Bd (MeV) 2.0235 2.1987 2.2311 2.2246(a) 2.224575(9)

AS (fm−1/2) 0.8333 0.8772 0.8865 0.8845 0.8846(9)

η 0.0212 0.0256 0.0256 0.0255 0.0256(4)

rd (fm) 1.990 1.968 1.966 1.972 1.97535(85)

Q (fm2) 0.230 0.273 0.270 0.271 0.2859(3)

PD (%) 2.54 4.73 4.50 4.19

(a)
The deuteron binding energy has been taken as input in the fit.

of ∼ 2 . . . 3% is in agreement with the expected natural
size of the corresponding LEC [107].

It is also instructive to address convergence of the chi-
ral expansion for the deuteron properties by looking at the
predictions at different orders which are listed in table 6.
Here we restrict ourselves to a single cutoff choice, namely
R = 0.9 fm. One observes a good convergence of the chiral
expansion for all listed quantities with the exception of
PD which is well known to be not observable.

Finally, we display in fig. 6 the deuteron wave func-
tions calculated using the N3LO potential of the present
work in comparison with those based on the CD-Bonn and
the N3LO potentials of refs. [16, 17]. As a consequence
of the employed regulator, the wave functions based on
the improved chiral potentials are free from the oscilla-
tory distortions observed in the case of the N3LO poten-
tials of refs. [16, 17] and are in a very good agreement
with each other and with the wave functions of the CD-
Bonn potential at distances larger than r ∼ 2 . . . 3 fm. No-
tice that momentum-space deuteron wave functions of the
N3LO potentials of refs. [16, 17] show significant devia-
tions from the wave functions based on the phenomeno-
logical potentials at p ∼ 400MeV. These deviations were
found in ref. [109] to be responsible for strong distortions
in the predicted shape of the neutron-deuteron differen-
tial cross section around the minimum at the energy of
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Fig. 6. Deuteron wave functions in coordinate space. Thin (red) dotted, dashed, dash-dotted, solid and dash-double-dotted lines
show the results obtained using the N3LO potentials of this work with the cutoffs R = 1.2 fm, R = 1.1 fm, R = 1.0 fm, R = 0.9 fm
and R = 0.8 fm, respectively. Thick (green) dotted (light brown), dashed (blue) and solid lines refer to the wave functions of
the Idaho (500) N3LO potential of ref. [17], the N3LO (550/600) potential of ref. [16] and the CD-Bonn potential [86].

EN, lab = 200MeV. It would be interesting to investigate
whether this problem still persists for the improved chiral
potentials. Work along these lines is in progress.

7 Estimation of the theoretical uncertainty

We now turn to the discussion of uncertainty quantifica-
tion in nuclear chiral EFT calculations, see ref. [99] for
a recent paper on this topic. Here and in what follows,
our considerations are restricted to few-nucleon systems,
for which the quantum mechanical A-body problem is as-
sumed to be (numerically) exactly solvable. This certainly
applies at least to systems with A ≤ 4. We will, therefore,
not address uncertainties associated with methods for cal-
culating observables.

There are various sources of uncertainties in nuclear
Hamiltonian derived in the framework of chiral EFT which
include, see also ref. [99]:

1) Systematic uncertainty due to truncation of the chiral
expansion at a given order.

2) Uncertainty in the knowledge of πN LECs which gov-
ern the long-range part of the nuclear force.

3) Uncertainty in the determination of LECs accompany-
ing contact interactions.

4) Uncertainties in the experimental data or, in our case,
the NPWA used to determine the LECs.

In addition, results of the calculations are expected to
show some sensitivity on the employed regularization
framework. This issue will be addressed at the end of this
section. Here and in what follows, we will primarily con-
centrate on the first item which, at the curent level of
calculations, we believe to be the dominant source of un-
certainty. We anticipate, based on the results reported in
refs. [77–79, 81, 82], that the impact of the uncertainties
in πN LECs and, especially in the order-Q2 ones, i.e. the
ci, on the calculated NN observables might be significant.

This issue should be investigated in a careful and system-
atic way in the future. A particularly promising approach
to determine the values of the πN LECs would be to per-
form a simultaneous investigation of πN scattering and
the reaction πN → ππN , see refs. [110, 111] on the chiral
EFT treatment of this process. Such an analysis goes be-
yond the scope of this work and is reserved for a future
investigation.

The uncertainty in the determination of NN contact
interaction is clearly affected by the employed fit proce-
dure such as, in particular, the choice of energy range and
weights adopted in the calculation of χ̃2. Following our
early work of [16], we used fixed ranges in energies to tune
the contact interactions as described in sect. 4 and checked
in each case the stability of our results with respect to their
variations. We did not employ additional weights in the
χ̃2 to account for the expected increase of the theoretical
uncertainty at higher energies, see ref. [83] for a differ-
ent approach. Both of these issues can, in principle, be
addressed in a systematic way within a Bayesian frame-
work [93, 99]. This topic is postponed for a future study.
Finally, statistical uncertainties for the LECs accompa-
nying NN contact interactions at N2LO were studied in
ref. [81]. Their impact on selected pp and np phase shifts
can be found in table 5 of that work and appears to be
negligibly small compared to the systematic theoretical
uncertainty to be discussed below.

Last but not least, there are uncertainties associated
with experimental data or, in our case, with the results
of NPWA used as input in our calculation, see sect. 4 for
more details. In particular, we emphasize that the data
base used in the NPWA of 1993 has been extended consid-
erably since that time. Specifically, the final database be-
low Elab = 350MeV used in the NPWA involved 1787 pp
and 2514 np data. On the other hand, the database used,
e.g., in the construction of the CD Bonn potential [86] con-
sists of 2932 pp and 3058 np data. We expect that increas-
ing the experimental database should have little impact
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Fig. 7. (Color online) Order-by-order convergence of the chiral expansion for the np total cross section at energies of Elab =
50 MeV, Elab = 96 MeV and Elab = 143 MeV and Elab = 200MeV. Dotted (light brown), dashed (green), dash-dotted (blue),
solid (red) and dash-double-dotted (pink) lines show the results based on the cutoff R = 1.2 fm, R = 1.1 fm, R = 1.0 fm,
R = 0.9 fm and R = 0.8 fm, respectively. The horizontal band refers to the result of the NPWA with the uncertainty estimated
by means of deviations from the results based on the Nijmegen I, II and Reid 93 potentials as explained in the text. Also shown
are experimental data of ref. [113].

on the resulting phase shifts at the level of the system-
atic uncertainty of the NPWA assumed in our work as
described in sect. 4. For example, as shown in table 3,
np and pp phase shifts obtained using the CD-Bonn po-
tential, which is constructed using the extended database,
are in a very good agreement with the NPWA. Notice,
however, that pp and np phase shifts and mixing angles
obtained in the recent coarse-grained potential analysis
of NN scattering of ref. [112] do differ significantly from
the ones of the CD Bonn potential and from those of the
NPWA and the Nijmegen I, II and Reid 93 potentials. This
is quite surprising given that this analysis employs essen-
tially the same pp database as the one used in the con-
struction of the CD-Bonn potential (while the np database
with 3717 data is somewhat larger). Consequently, using
the phase shifts and mixing angles reported in that work
results in fairly large values of χ̃2/datum defined in sect. 4,
namely χ̃2/datum = 4 . . . 8. Unfortunately, neither the
NPWA [45] nor the coarse-grained analysis of ref. [112]
provide any estimation of the systematic uncertainties so
that the origin and interpretation of these discrepancies
remain unclear. We do not include the results of ref. [112]
in our analysis.

We now address the systematic uncertainty of our cal-
culation due to the truncation of the chiral expansion.
To the order we are working, we expect it to be still the
dominant source of the theoretical uncertainty. Unfortu-
nately, most of the available calculations do not address
this source of uncertainty or at best estimate it by means
of a residual cutoff dependence, see, e.g., [5,16,35] and ref-
erences therein. Such an approach, however, is well known
to suffer from several deficiencies. First of all, the result-
ing uncertainty depends on the employed cutoff range and,
therefore, shows some arbitrariness. Secondly, as already
pointed out before, the residual cutoff dependence mea-
sures the contributions due to neglected contact interac-
tions which appear only at even orders of the momentum
expansion of the NN Hamiltonian. While the residual cut-
off dependence of a given NN observable at LO does indeed

measure the size of NLO corrections, it reflects the sen-
sitivity to the order-Q4 (i.e. N3LO) contact interactions
at both NLO (order-Q2) and N2LO (order-Q3). For this
reason, the uncertainty at NLO and similarly at N3LO
estimated in this way may be expected to be underesti-
mated. On the other hand, given that the range of the
available momentum-space cutoffs is rather limited from
above both for the conceptual and practical [92] reasons,
see also the discussion in sect. 3, one is forced to em-
ploy soft cutoffs in order to have a cutoff range sufficient
for an estimation of the theoretical uncertainty. Such a
procedure is, however, likely to induce large finite-cutoff
artefacts and, therefore, to unnecessarily overestimate the
true theoretical uncertainty.

To illustrate these features, consider the chiral ex-
pansion of the np total cross section at the energies of
Elab = 50, 96, 143 and 200MeV based on the interactions
introduced in the previous sections as shown in fig. 7. We
also show in this figure by the horizontal band the result
of the NPWA with the assumed theoretical uncertainty
and the experimental data of ref. [113]. The convergence
pattern for the total cross section depicted in fig. 7 shows
the general features one expects to see in chiral EFT: one
observes fast convergence at the lowest energy which be-
comes increasingly slower at higher energies. Notice that
the large size of higher-order corrections at the energy of
Elab = 200MeV relative to the leading ones is actually due
to the NLO contributions being smaller than expected as
will be shown below. One also observes another feature
which persists at all energies, namely that the size of the
N2LO corrections decreases with increasing the values of
R. Given that the only new ingredient in the potential at
N2LO is the subleading TPEP, this pattern simply reflects
that the TPEP is stronger cut off for soft cutoff choices.

The results shown in fig. 7 provide a good illustration
of the above mentioned issues associated with the esti-
mation of the theoretical uncertainty by means of a cutoff
variation. In particular, while the spread in the predictions
does, in general, decrease with the chiral order, it remains
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nearly the same at NLO and N2LO. Furthermore, at NLO,
it misses (albeit barely) the result of the NPWA which is
consistent with the expected underestimation of the theo-
retical uncertainty at this order. On the other hand, while
the spread in the predictions based on different cutoffs is
roughly consistent with the deviations between the the-
ory and the NPWA result for the lowest energy, it ap-
pears to significantly overestimate the uncertainty of the
calculation based on lower (i.e. harder) cutoffs R if one
estimates it via the deviation between the theory and the
NPWA results. This behavior at high energy suggests that
the spread between the predictions for different values of
R is actually governed by artefacts associated with too
soft cutoffs and does not reflect the true theoretical un-
certainty of chiral EFT. We, therefore, conclude that while
being a useful consistency check of the calculation, cutoff
variation in the employed range does not provide a reli-
able approach for estimating the theoretical uncertainty.
As we will show below, estimating the uncertainty via the
expected size of higher-order corrections, as it is common,
e.g., in the Goldstone boson and single-baryon sectors of
chiral perturbation theory, provides a natural and more
reliable approach which, in addition, has an advantage to
be applicable at any fixed value of the cutoff R.

For a given observable X(p), where p is the cms mo-
mentum corresponding to the considered energy, the ex-
pansion parameter in chiral EFT is given by

Q = max
(

p

Λb
,

Mπ

Λb

)
, (33)

where Λb is the breakdown scale. Based on the results
presented in sects. 4 and 5, we will use Λb = 600MeV for
the cutoffs R = 0.8, 0.9 and 1.0 fm, Λb = 500MeV for R =
1.1 fm and Λb = 400MeV for R = 1.2 to account for the
increasing amount of cutoff artefacts which is reflected by
the larger values of χ̃2/datum in table 3. We have verified
the consistency of the choice Λb = 400MeV for the softest
cutoff R = 1.2 fm by making the error plot similar to the
one shown in fig. 5. We can now confront the expected
size of corrections to the np total cross section at different
orders in the chiral expansion with the result of the actual
calculations. In particular, for the cutoff choice of R =
0.9 fm, we obtain

σtot(50MeV) = 183.6Q0 − 17.1Q2 (∼12) + 0.5Q3 (∼3)

−0.2Q4 (∼0.8)

= 166.8mb,

σtot(96MeV) = 84.8Q0 − 9.7Q2 (∼11) + 3.2Q3 (∼4)

−0.8Q4 (∼1.3)

= 77.5mb,

σtot(143MeV) = 52.5Q0 − 3.4Q2 (∼10) + 5.1Q3 (∼4)

−0.5Q4 (∼1.8)

= 53.7mb,

σtot(200MeV) = 34.9Q0 + 1.0Q2 (∼9) + 6.7Q3 (∼5)

+0.6Q4 (∼2.4)

= 43.2mb, (34)

see also fig. 7, while for the softest cutoff R = 1.2 fm we
find

σtot(50MeV) = 159.4Q0 + 5.4Q2 (∼23) + 0.8Q3 (∼9)

+1.6Q4 (∼3) = 167.2mb,

σtot(96MeV) = 60.2Q0 + 8.7Q2 (∼17) + 2.4Q3 (∼9)

+6.8Q4 (∼5) = 78.1mb,

σtot(143MeV) = 30.8Q0 + 7.8Q2 (∼13) + 2.8Q3 (∼8)

+11.2Q4 (∼5) = 52.6mb,

σtot(200MeV) = 17.2Q0 + 5.3Q2 (∼10) + 2.5Q3 (∼8)

+13.6Q4 (∼6) = 38.6mb. (35)

The expected size of NLO, N2LO and N3LO correc-
tions indicated in the subscripts is estimated as (p/Λb)2,
(p/Λb)3 and (p/Λb)4 times the LO result in each particu-
lar case. The cms momenta corresponding to the energies
of Elab = 50, 96, 143 and 200MeV are p = 153MeV,
p = 212MeV, p = 259MeV and p = 307MeV, respec-
tively. Generally, the estimated size of corrections at var-
ious orders appears to be in a reasonable agreement with
their actual size. The N3LO corrections are smaller than
expected for R = 0.9 fm but turn out to be large for the
cutoff R = 1.2 fm at higher energies. We emphasize that it
might be too optimistic to expect a convergent expansion
at the energies of Elab = 143 and 200MeV for the softest
cutoff since the expansion parameter Q in these cases is
larger than 0.5. Also the fact that the LO contribution at
the highest energy for R = 1.2 fm amounts to less than
half of the total result suggests that this cutoff is not ap-
plicable at such an energy. We also observe an interesting
feature that the EFT expansion actually converges faster
than expected at low energy when soft cutoffs are em-
ployed, see the first line in eq. (35) and the left plot in
fig. 7. This behavior becomes even more pronounced at
lower energies. In fact, when increasing the r-space cut-
off R, we actually continuously integrate out pion physics,
and the resulting theory would gradually turn into pion-
less EFT if we would further soften the cutoff. At very
low energies with momenta well below the pion mass, pio-
nless EFT, which corresponds to the expansion in p/Mπ,
may actually be more efficient than the expansion in chiral
EFT which is controlled by the parameter Mπ/Λb.

Having tested our estimation for the breakdown scale
Λb in the results for the np total cross section at vari-
ous chiral orders, we are now in the position to estimate
the theoretical uncertainty of our results at N3LO. To
be on a conservative side, we will ascribe the uncertainty
ΔXN3LO(p) of our N3LO prediction XN3LO(p) for an ob-
servable X(p) via

ΔXN3LO(p) = max
(
Q5 ×

∣∣XLO(p)
∣∣,

Q3 ×
∣∣XLO(p) − XNLO(p)

∣∣,
Q2 ×

∣∣XNLO(p) − XN2LO(p)
∣∣,

Q ×
∣∣XN2LO(p) − XN3LO(p)

∣∣), (36)
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Fig. 8. (Color online) Predictions for the np total cross section based on the improved chiral NN potentials at NLO (filled squares,
orange), N2LO (solid diamonds, green) and N3LO (filled triangles, blue) at the energies of Elab = 50MeV, Elab = 96MeV,
Elab = 143MeV and Elab = 200 MeV for the different choices of the cutoff: R1 = 0.8 fm, R2 = 0.9 fm, R3 = 1.0 fm, R4 = 1.1 fm,
R5 = 1.2 fm. Vertical boxes depict the cutoff dependence of the theoretical predictions at different orders. The horizontal band
refers to the result of the NPWA with the uncertainty estimated by means of deviations from the results based on the Nijmegen
I, II and Reid 93 potentials as explained in the text. Also shown are experimental data of ref. [113].

where the expansion parameter Q is given by eq. (33) and
the scale Λb is chosen dependent of the cutoff R as dis-
cussed above. We emphasize that such a simple estimation
of the theoretical uncertainty does not provide a statistical
interpretation. This can be improved, e.g., by employing a
Bayesian framework [93, 99] and performing marginaliza-
tion over higher-order corrections. We postpone such an
analysis for a future study and will adopt the simplified
treatment introduced above here and in what follows. We
will further impose an additional constraint for the theo-
retical uncertainties at NLO and N2LO by requiring them
to have at least the size of the actual higher-order contri-
butions. We emphasize that the above way of estimating
the uncertainty does not rely on cutoff variation and can
be carried out for any given value of R.

Our results for the np total cross section at various
orders in the chiral expansion and for various choices of
the cutoff R are shown in fig. 8. Notice that at the small-
est energy, we observe deviations between our N3LO re-
sults and the NPWA which are likely caused by the em-
ployed treatment of IB corrections in the 1S0 partial way.
In particular, we chose to determine the LECs C1S0, D1

1S0
and D2

1S0 solely from the pp phase shift and adjusted

C̃np
1S0 to reproduce the np scattering length. The split-

ting between the np and pp 1S0 phase shifts thus comes
out as a prediction. It is therefore not surprising that
the results for the np 1S0 phase shifts show some devi-
ations from the NPWA. These deviations are expected
to be largely reduced at next-higher order in the chiral
expansion.

In all cases shown in fig. 8, the predicted results calcu-
lated using different values of the cutoff R agree with each
other within the theoretical uncertainty. It is comforting
to see that our procedure for estimating the uncertainty
yields the pattern which is qualitatively similar to the one
found based on the χ̃2/datum for the description of the Ni-
jmegen np and pp phase shifts as shown in table 3. In par-
ticular, we see that the most accurate results at the lowest
energy are achieved with the cutoff R = 1.0 fm (with the
uncertainty for the R = 0.9 fm case being of a comparable
size). At higher energies, the cutoff R = 0.9 fm clearly pro-
vides the most accurate choice. We also observe that at the
lowest energy, the cutoff variation does considerably un-
derestimate the theoretical uncertainty at NLO and, to a
lesser extent, at N3LO as expected based on the arguments
given above. This pattern changes at higher energies. For
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Fig. 9. (Color online) Estimated theoretical uncertainty of the np phase shifts at NLO, N2LO and N3LO based on the cutoff
of R = 0.9 fm in comparison with the NPWA [45] (solid dots) and the GWU single-energy np partial wave analysis [94] (open
triangles). The light-(yellow), medium-(green) and dark-(blue) shaded bands depict the estimated theoretical uncertainties at
NLO, N2LO and N3LO, as explained in the text. Only those partial waves are shown which have been used in the fits at N3LO.

example, at Elab = 200MeV, the cutoff bands at NLO
and N3LO appear to be of the same size as the estimated
uncertainty based on the optimal cutoff R = 0.9 fm. It is
actually a combination of two effects which work against
each other which results in a “reasonable” estimation of
the NLO and N3LO uncertainties at higher energies by
the cutoff bands: on the one hand, as already mentioned
above, cutoff bands measure the impact of the order-Q4

and order-Q6 contact interactions and, therefore, under-
estimate the uncertainty at NLO and N3LO. On the other
hand, at higher energies, cutoff bands get increased due to
using softer values of R as it is clearly visible from fig. 8.
This conclusion is further supported by the N2LO cutoff
band which strongly overestimates the estimated uncer-
tainty in the case of R = 0.9 fm. We also learn from fig. 8
that N2LO results for the total cross section for the cut-
offs of R = 0.9 fm and R = 1.0 fm have the accuracy which
is comparable to N3LO calculations with the softest cut-
off R = 1.2 fm. In summary, we find that the suggested
approach for error estimation is more reliable than the
standard procedure by means of cutoff bands and, in ad-
dition, has the advantage of being applicable for a fixed
value of R. This allows one to avoid the artificial increase
of the theoretical uncertainty due to cutoff artefacts, the
issue which is especially relevant at high energies where
the chiral expansion converges slower. The issue with us-
ing the cutoff bands is expected to become particularly
important at next-to-next-to-next-to-next-to-leading or-
der (N4LO) in the chiral expansion. In particular, we ex-
pect that the residual cutoff dependence at N4LO will be
comparable to that at N3LO, and that it will significantly
overestimate the real N4LO uncertainty at higher ener-

gies in a close analogy to what is observed at N2LO. Last
but not least, the ability to carry out independent calcu-
lations with quantified uncertainties also provides a useful
consistency check.

Next, we show in fig. 9 the estimated uncertainty of
the S-, P- and D-wave phase shifts and the mixing angles
ε1 and ε2 at NLO, N2LO and N3LO based on R = 0.9 fm.
The various bands result by adding/subtracting the esti-
mated theoretical uncertainty, ±Δδ(Elab) and ±Δε(Elab),
to/from the results shown in fig. 3. In a similar way, we
also looked at selected neutron-proton scattering observ-
ables at different energies shown in figs. 10–13. For the
lowest considered energy of Elab = 50MeV, we show, in
addition to the results using R = 0.9 fm, also our predic-
tions for the softest cutoff choice of R = 1.2 fm. While the
uncertainty is clearly increased, the results actually still
appear to be rather accurate at this energy. Our results
agree with the ones of the NPWA for all considered ob-
servables and energies indicating that the employed way
to estimate the uncertainties is quite reliable. Generally,
we find that chiral EFT at N3LO allows for very accu-
rate results at energies below Elab ∼ 100MeV and still
provides accurate description of the data at energies of
the order of Elab ∼ 200MeV. These findings are par-
ticularly promising for the ongoing studies of the three-
nucleon force whose contributions to nucleon-deuteron
scattering observables are believed to increase at energies
above EN, lab ∼ 100MeV. It would be interesting to per-
form a similar analysis of nucleon-deuteron scattering data
based on the improved chiral NN potentials in order to see
whether accurate predictions are to be expected at such
energies at N3LO. Work along these lines is in progress.
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Fig. 10. (Color online) Estimated theoretical uncertainty of the chiral EFT results for np differential cross section dσ/dΩ,
vector analyzing power A, polarization transfer coefficients D and A and spin correlation parameters Axx and Ayy at laboratory
energy of Elab = 50MeV. The light-(yellow), medium-(green) and dark-(blue) shaded bands depict the estimated theoretical
uncertainties at NLO, N2LO and N3LO, respectively. Open circles refer to the result of the NPWA. The upper (lower) panel
shows the results based on the optimal (softest) cutoff choice of R = 0.9 fm (R = 1.2 fm). Data for the cross section are taken
from [114,115] and for the analyzing power from [116–120].

The formulated approach for error estimation can
be straightforwardly applied to the deuteron properties
as well. For example, one finds for the optimal cutoff
choice of R = 0.9 fm the uncertainty of the asymptotic
S state normalization AS to be ∼ 0.013 fm−1/2 at NLO,
∼ 0.003 fm−1/2 at N2LO and ∼ 0.0008 fm−1/2 at N3LO.

The uncertainty of the D/S state ratio η is estimated to
be ∼ 0.001 at NLO, ∼ 0.0003 at N2LO and ∼ 0.0001 at
N3LO. Here we have assumed that the expansion param-
eter is given by Q = Mπ/Λb. For both observables, the
theoretical uncertainties at N3LO already appear to be
below the ones of the empirical numbers.
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Fig. 11. Estimated theoretical uncertainty of the chiral EFT results for np differential cross section dσ/dΩ, vector analyzing
power A, polarization transfer coefficients D and A and spin correlation parameters Axx and Ayy at laboratory energy of
Elab = 96MeV calculated using on the cutoff of R = 0.9 fm. The light-(yellow), medium-(green) and dark-(blue) shaded bands
depict the estimated theoretical uncertainties at NLO, N2LO and N3LO, respectively. Open circles refer to the result of the
NPWA. Data for the cross section are taken from [121–123]. Data for the analyzing power are at Elab = 95MeV and taken
from [124].

Fig. 12. (Color online) Estimated theoretical uncertainty of the chiral EFT results for np differential cross section dσ/dΩ,
vector analyzing power A, polarization transfer coefficients D and A and spin correlation parameters Axx and Ayy at laboratory
energy of Elab = 143 MeV calculated using on the cutoff of R = 0.9 fm. The light-(yellow), medium-(green) and dark-(blue)
shaded bands depict the estimated theoretical uncertainties at NLO, N2LO and N3LO, respectively. Open circles refer to the
result of the NPWA. Data for the cross section are at Elab = 142.8 MeV and taken from [125] and for the analyzing power
from [126].
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Fig. 13. (Color online) Estimated theoretical uncertainty of the chiral EFT results for np differential cross section dσ/dΩ,
vector analyzing power A, polarization transfer coefficients D and A and spin correlation parameters Axx and Ayy at laboratory
energy of Elab = 200 MeV calculated using on the cutoff of R = 0.9 fm. The light-(yellow), medium-(green) and dark-(blue)
shaded bands depict the estimated theoretical uncertainties at NLO, N2LO and N3LO, respectively. Open circles refer to the
result of the NPWA. Data for the cross section are at Elab = 199MeV from [127] and at Elab = 200 MeV from [128]. Data for
the analyzing power are at Elab = 199MeV from [127].

Finally, we emphasize that our results depend little
on the specific choice of the regulator function. In order
to quantify this dependence, we performed fits using the
cutoff R = 1.0 fm but employing different values of the ex-
ponent in eq. (27), namely n = 5 and n = 7. In table 7, we
show the resulting phase shifts in the 3S1 and pp 1S0, 3P0,
3P1 and 3P2 partial waves at the energies of 10, 100 and
200MeV as representative examples. Clearly, the observed
spread in the results is negligibly small compared to the
estimated accuracy of our calculations. Furthermore, as
already pointed out in sect. 3, the employed local regular-
ization of the pion-exchange contributions makes the spec-
tral function regularization obsolete. In particular, phase
shifts resulting from fits using different values of the SFR
cutoff Λ = 1GeV, Λ = 1.5GeV and Λ = 2GeV, see the
last three columns in table 7, are nearly indistinguishable
from each other and from the DR result corresponding to
Λ = ∞ and shown in the third column of this table.

8 Summary and conclusions

In this paper we have presented a new generation of
NN potentials derived in chiral EFT up to N3LO9. The
new chiral forces offer a number of substantial improve-
ments as compared to the widely used N3LO potentials of

9 A user-friendly computer program to generate matrix ele-
ments of the new chiral potentials will be made available upon
request after completing the testing phase.

refs. [16, 17] introduced a decade ago. First of all, we em-
ploy a local regularization scheme for the pion exchange
contributions which, differently to the standard nonlocal
regularization applied, e.g., in refs. [16, 17], does not dis-
tort the low-energy analytic structure of the amplitude
and, as a consequence, leads to a better description of
phase shifts and experimental data. The employed regula-
tor, by construction, removes the short-range part of the
chiral two-pion exchange and thus makes the additional
spectral function regularization used in the potential of
ref. [16] obsolete. This is a particularly welcome feature
given that the expressions for the three-nucleon force at
N3LO and N4LO are only available in the framework of
dimensional regularization. Further, in contrast to the ear-
lier studies of refs. [16,17], we have taken all pion-nucleon
LECs and especially the subleading LECs ci from pion-
nucleon scattering without any fine tuning. The LECs ac-
companying NN contact interactions were determined by
fits to the Nijmegen phase shifts and mixing angles for five
different values of the coordinate-space cutoff R chosen in
the range of R = 0.8 . . . 1.2 fm and appear to be of natural
size in all cases. The new N3LO potentials allow for an ex-
cellent description of the Nijmegen np and pp phase shifts
at energies below 200MeV and, for the cutoff choices of
R = 0.9 fm and R = 1.0 fm, even up to Elab = 300MeV.
Furthermore, the deuteron properties are accurately de-
scribed. Moreover, the deuteron wave functions are free
from distortions at distances larger than r ∼ 2 . . . 3 fm
which appear for the N3LO potentials of refs. [16,17] due
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Table 7. Selected phase shifts (in degrees) calculated at N3LO using the cutoff of R = 1.0 fm with the theoretical uncertainty
determined according to eq. (36) in comparison with the results of the NPWA. Also shown are N3LO fits for the same value of
R but a different functional form of the regulator with n = 5 and n = 7, see eq. (27), and fits based on the spectral function
regularization with the corresponding cutoff of Λ = 1 GeV, Λ = 1.5 GeV and Λ = 2GeV.

Lab. energy NPWA [45] Our result DR, n = 5 DR, n = 7 SFR, 1.0 GeV SFR, 1.5 GeV SFR, 2.0 GeV

Proton-proton 1S0 phase shift

10MeV 55.23 55.22 ± 0.08 55.22 55.22 55.22 55.22 55.22

100MeV 24.99 24.98 ± 0.60 24.98 24.98 24.98 24.98 24.98

200MeV 6.55 6.56 ± 2.2 6.55 6.56 6.56 6.56 6.57

Neutron-proton 3S1 phase shift

10MeV 102.61 102.61 ± 0.07 102.61 102.61 102.61 102.61 102.61

100MeV 43.23 43.22 ± 0.30 43.28 43.20 43.17 43.21 43.22

200MeV 21.22 21.2 ± 1.4 21.2 21.2 21.2 21.2 21.2

Proton-proton 3P0 phase shift

10MeV 3.73 3.75 ± 0.04 3.75 3.75 3.75 3.75 3.75

100MeV 9.45 9.17 ± 0.30 9.15 9.18 9.18 9.17 9.17

200MeV −0.37 −0.1 ± 2.3 −0.1 −0.1 −0.1 −0.1 −0.1

Proton-proton 3P1 phase shift

10MeV −2.06 −2.04 ± 0.01 −2.04 −2.04 −2.04 −2.04 −2.04

100MeV −13.26 −13.42 ± 0.17 −13.43 −13.41 −13.41 −13.42 −13.42

200MeV −21.25 −21.2 ± 1.6 −21.2 −21.2 −21.2 −21.2 −21.2

Proton-proton 3P2 phase shift

10MeV 0.65 0.65 ± 0.01 0.66 0.65 0.65 0.65 0.65

100MeV 11.01 11.03 ± 0.50 10.97 11.06 11.07 11.05 11.04

200MeV 15.63 15.6 ± 1.9 15.6 15.5 15.5 15.5 15.6

to the employed form of the regulator. We found that the
description of the Nijmegen phase shifts improves substan-
tially when going from LO to NLO, from NLO to N2LO
and from N2LO to N3LO as one expects for a convergent
expansion. It is worth to emphasize in this connection that
the short range part of the NLO and N2LO potentials in-
volves the same set of operators. Our findings therefore
provide yet another evidence of the subleading two-pion
exchange which was also observed in earlier studies. As
an important consistency check of our approach, we have
studied the residual cutoff dependence of phase shifts at
different orders in the chiral expansion. We found, in par-
ticular, that the cutoff dependence is strongly reduced at
N3LO compared to N2LO in the whole considered range
of energies.

We have also addressed the issue of the uncertainty of
our results due to the truncation of the chiral expansion
at a given order. In particular, we have argued that the
standard procedure for error estimation based on a cutoff
variation is not reliable and employed a simple alterna-
tive approach by directly estimating the expected size of
higher-order contributions at a given energy. Such a pro-
cedure has the advantage of being applicable for any fixed
value of the cutoff so that calculations based on differ-
ent cutoffs can be used to provide additional consistency
checks. Furthermore, disentangling the error analysis from
the cutoff variation allows one to avoid an unnecessary

increase of uncertainty due to softening the interaction.
Notice that the versions of the potential corresponding to
soft choices of the cutoff R may still be useful for certain
kinds of applications including, in particular, many-body
calculations. We have applied this approach to the total
np cross section at several energies and have verified that
the results at different chiral orders and for different val-
ues of the cutoff are indeed consistent with each other. We
have furthermore used this method to quantify the theo-
retical uncertainty in the description of the np phase shifts
as well as differential cross sections and selected polariza-
tion observables in np scattering. In particular, we found
the N3LO results for np scattering to be very accurate at
energies below ∼ 100MeV with the corresponding error
bands being barely visible and still rather accurate at the
energy of Elab = 200MeV. In all considered cases, our
results agree with the ones based on the NPWA within
the estimated theoretical accuracy. This gives us addi-
tional confidence in the reliability of the suggested way
of quantifying the uncertainty. We have furthermore ana-
lyzed the uncertainties associated with making a specific
choice of the functional form of the local regulator and
employing the additional spectral function regularization
of the TPEP and found them to be negligible at the level
of the estimated theoretical accuracy at N3LO.

The improved chiral potentials introduced in this work
should provide an excellent starting point for applications
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to few-nucleon systems. In particular, nucleon-deuteron
scattering offers a natural testing ground for studying the
details of the three-nucleon force which is subject of exten-
sive research [15]. The existing calculations based on mod-
ern phenomenological potentials suggest that effects of the
three-nucleon force in nucleon-deuteron scattering should
be small at low energy (except for certain observables like
the vector analyzing power) but become clearly visible at
intermediate energies of EN, lab ∼ 70MeV and above. It is
encouraging to see that chiral EFT provides a rather accu-
rate description of NN scattering in this energy range. We
expect a similar theoretical accuracy for nucleon-deuteron
scattering observables, but this needs to be verified via ex-
plicit calculations. Work along these lines is in progress.
For applications to medium-mass and heavy nuclei based
on the continuum methods, the potentials typically need
to be softened by using the renormalization group type
techniques such as, e.g., the similarity renormalization
group approach, in order to make the many-body problem
numerically tractable. It remains to be seen whether the
new NN potentials, which do have a substantial amount
of high-momentum components due to the employed local
regulator, can be softened sufficiently without inducing a
too large amount of many-body forces.

In addition to the already mentioned applications to
few- and many-nucleon systems, this work should be ex-
tended in various directions. First, the calculations should
be carried out at next-higher order in the chiral expansion,
see ref. [95] for a recent work along this line. This would,
in particular, provide a nontrivial check for our estima-
tion of uncertainties at N3LO. Secondly, isospin-breaking
effects and the role of the three-pion exchange contribu-
tions should be studied in detail. Furthermore, it is im-
portant to quantify the uncertainty associated with the
values of the pion-nucleon LECs and investigate the pos-
sibility of constraining them from NN or even few-nucleon
data in a systematic way. Last but not least, it would be
desirable to employ a more elaborate way of estimating
the systematic theoretical uncertainty which would allow
for a statistical interpretation of the errors. Work along
these lines is in progress.
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and suggestions. This work was supported by the Euro-
pean Community-Research Infrastructure Integrating Activ-
ity “Study of Strongly Interacting Matter” (acronym Hadron-
Physics3, Grant Agreement n. 283286) under the Seventh
Framework Programme of EU, the ERC project 259218 NU-
CLEAREFT and by the DFG and NSFC (CRC 110).

Appendix A. Scattering amplitude in the
partial wave basis

Consider two nucleons moving with momenta �p1 and �p2.
We use relativistic kinematics for relating the energy Elab

of the two nucleons in the laboratory system to the square
of the nucleon momentum �p in the cms defined by the
condition �p1 + �p2 = 0. As explained in sect. 2, the NN

potentials constructed in the present work are to be used
in the Schrödinger equation10

[
p2

mN
+ V

]
Ψ =

k2

mN
Ψ. (A.1)

where mN = mp, mN = mn and mN = 2mpmn/(mp +
mn) for the pp, nn and np systems, respectively. Here
and in what follows we use for all momenta the notation
of, e.g., p ≡ |�p |. The relation between Elab and k2 in
the above equation is based on relativistic kinematics and
reads
– Proton-proton case:

k2 =
1
2
mpElab . (A.2)

– Neutron-neutron case:

k2 =
1
2
mnElab . (A.3)

– Neutron-proton case:

k2 =
m2

pElab(Elab + 2mn)
(mn + mp)2 + 2Elabmp

. (A.4)

The Lippmann-Schwinger equation for the off-the-energy
shell T-matrix corresponding to eq. (A.1) and projected
onto states with orbital angular momentum l, total spin s
and total angular momentum j has the form

T sj
l′l (p

′, p; k2) = V sj
l′l (p′, p) +

∑
l′′

∫ ∞

0

dq q2 V sj
l′l′′(p

′, q)

× mN

k2 − q2 + iη
T sj

l′′l(q, p; k2), (A.5)

with η → 0+. In the uncoupled case, l is conserved. The
partial wave projected potential V sj

ll′ (p′, p) can be obtained
using the formulae collected in appendix B of ref. [16]. The
relation between the S- and T-matrices is given by

Ssj
l′l(k) = δl′l − iπkmNT sj

l′l (k, k; k2). (A.6)

The phase shifts in the uncoupled cases can be obtained
from the S-matrix via

S0j
jj = exp

(
2iδ0j

j

)
, S1j

jj = exp
(
2iδ1j

j

)
, (A.7)

where we have used the notation δsj
l . Throughout, we use

the so-called Stapp parametrization [129] of the S-matrix
in the coupled channels (j > 0) defined as

S =

(
S1j

j−1 j−1 S1j
j−1 j+1

S1j
j+1 j−1 S1j

j+1 j+1

)
=

(
cos(2ε) exp(2iδ1j

j−1) i sin(2ε) exp(iδ1j
j−1+iδ1j

j+1)

i sin(2ε) exp(iδ1j
j−1+iδ1j

j+1) cos(2ε) exp(2iδ1j
j+1)

)
,

(A.8)
10 For the np system, this equation is correct modulo terms
which are proportional to (mp − mn)2 which are beyond the
accuracy of the present calculation.
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and is related to another frequently used parametrization
due to Blatt and Biedenharn [130, 131] in terms of δ̃ and
ε̃ via the following equations:

δj−1 + δj+1 = δ̃j−1 + δ̃j+1,

sin(δj−1 − δj+1) =
tan(2ε)
tan(2ε̃)

,

sin(δ̃j−1 − δ̃j+1) =
sin(2ε)
sin(2ε̃)

. (A.9)

For pp scattering, the phase shifts considered in the
present work are of the nuclear plus relativistic Coulomb
interaction with respect to relativistic Coulomb wave func-
tions, i.e. δC1

C1+N using the notation of ref. [45]. We use the
method proposed by Vincent and Phatak [132] to calcu-
late the corresponding phase shifts and mixing angles in
momentum space, see also refs. [16,40,86] for a description
of this approach.
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