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Abstract. Because the collapse of massive stars occurs in a few seconds, while the stars evolve on billions
of years, the supernovae are typical complex phenomena in fluid mechanics with multiple time scales. We
describe them in the light of catastrophe theory, assuming that successive equilibria between pressure and
gravity present a saddle-center bifurcation. In the early stage we show that the loss of equilibrium may be
described by a generic equation of the Painlevé I form. This is confirmed by two approaches, first by the full
numerical solutions of the Euler-Poisson equations for a particular pressure-density relation, secondly by a
derivation of the normal form of the solutions close to the saddle-center. In the final stage of the collapse,
just before the divergence of the central density, we show that the existence of a self-similar collapsing
solution compatible with the numerical observations imposes that the gravity forces are stronger than
the pressure ones. This situation differs drastically in its principle from the one generally admitted where
pressure and gravity forces are assumed to be of the same order. Moreover it leads to different scaling
laws for the density and the velocity of the collapsing material. The new self-similar solution (based on the
hypothesis of dominant gravity forces) which matches the smooth solution of the outer core solution, agrees
globally well with our numerical results, except a delay in the very central part of the star, as discussed.
Whereas some differences with the earlier self-similar solutions are minor, others are very important. For
example, we find that the velocity field becomes singular at the collapse time, diverging at the center,
and decreasing slowly outside the core, whereas previous works described a finite velocity field in the
core which tends to a supersonic constant value at large distances. This discrepancy should be important
for explaining the emission of remnants in the post-collapse regime. Finally we describe the post-collapse
dynamics, when mass begins to accumulate in the center, also within the hypothesis that gravity forces
are dominant.

1 Introduction

It is a great pleasure to write this contribution in honor of
Paul Manneville. We present below work belonging to the
general field where he contributed so eminently, nonlinear
effects in fluid mechanics. However, our topic is perhaps
slightly unusual in this respect because it has to do with
fluid mechanics on a grand scale, namely the scale of the
Universe.

We all know that Astrophysics has to tackle a huge
variety of phenomena, mixing widely different scales of

� Contribution to the Topical Issue “Irreversible Dynamics:
A topical issue dedicated to Paul Manneville” edited by Patrice
Le Gal and Laurette S. Tuckerman.

a e-mail: martine.le-berre@u-psud.fr

space and time. Our contribution below is perhaps the
closest one can imagine of a problem of nonlinear and
highly non-trivial fluid mechanics in Astrophysics, the ex-
plosion of supernovae. In this fascinating field, many basic
questions remain to be answered. The most basic one can
be formulated as follows: stars evolve on very long time
scales, in the billion years range, so why is it that some
stars abruptly die (as far as their luminous output is con-
cerned) in a matter of days or even of seconds? This was
the point which motivated our work. Actually astrophysi-
cists have worked since almost a century in the aim of
finding plausible mechanisms in agreement with what has
been observed, which is not the death process itself but
the radiation emitted after the star death. Yet no definite
answer is given, and it seems that the understanding of su-
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pernovae is “in an unsatisfactory state of affairs” to quote
a recent review by Burrows [1]. The state of the art dis-
tinguishes two kinds of supernovae [2], corresponding to
two kinds of death: explosion and collapse. The first kind
concerns accreting white dwarfs (Type Ia) whose mass in-
creases (and radius decreases because of gravity) to about
the Chandrasekhar limit (the limit mass of a sphere of
ultra-relativistic electrons when its radius tends to zero).
The explosion which lasts about 10 seconds is thought to
have a thermonuclear origin. It is followed by the expan-
sion of a cloud of ejecta glowing brightly for many weeks as
radioactive matter produced in the explosion decays, and
leads to the total disintegration of the initial star with-
out any remnants. The second kind concerns all the rest
(young massive stars) which are supposed to collapse first
and then emit matter and radiation, leading to the forma-
tion of remnants besides a neutron star (or a black hole).

We focus here on the second kind of star death, the
collapse process which was understood and modeled via
more and more sophisticated Newtonian and relativistic
hydrodynamical simulations including weak interactions,
nuclear equations of state, 3D effects, and new insights
into the nucleosynthesis occurring before and during the
collapse. While this is not our approach, let us present
some general results of these studies. As a result of their
evolution massive stars are supposed to pass through suc-
cessive stages of hydrogen, helium, carbon, neon, oxy-
gen and silicon fusion in their center, getting a layered
structure like onions as progressively heavier atomic nu-
clei build up at the center. In this picture, although the
fusion of hydrogen and helium takes millions of years, the
last burning phase (silicon) lasts only two weeks, leading
to a core of iron-group elements which undergoes catas-
trophic collapse as soon as its mass exceeds the Chan-
drasekhar value because the degeneracy pressure cannot
support it. Theories predict emission of a huge quantity of
neutrinos during the collapse which were supposed to play
an important role in turning the collapse into the explo-
sion seen with optical telescopes. Neutrinos were indeed
observed once, three hours before the visible light from
SN 1987A reached the Earth, at three separate neutrino
observatories.

Our approach of the phenomenon of supernova explo-
sion is not to try to describe quantitatively this immensely
complex phenomenon, something which could well be be-
yond reach because it depends on so many uncontrolled
and poorly known physical phenomena, like equations of
state of matter in conditions not realizable in laboratory
experiments, the definition of the initial conditions for the
star collapse, the distribution of various nuclei in the star,
etc. We argue that the huge difference of time scales in-
volved should lead to a description of the supernovae in
the light of catastrophe theory [3], the basic mechanism
for star collapse being the loss of equilibrium between
pressure and self-gravity. We consider the case where the
star is in equilibrium during a long period, as the time-
dependent control parameter changes, then the series of
equilibria presents a bifurcation such that no equilibrium
exists beyond the critical point. The bifurcation should
be a saddle-center because our system is Hamiltonian (it

is described by the Euler-Poisson equations). In the slow
regime we assume that an adiabatic approximation is pos-
sible, neglecting the diffusion and/or mechanical arrange-
ment processes which could be responsible of some discon-
tinuities in the route to equilibrium, because these pro-
cesses have a short time scale compared to the slow evo-
lution time.

While the theory of this equilibrium with the relevant
equations is well known, we did not find in the immense
literature devoted to supernovae any interpretation of the
transition from the slow evolution before the collapse to
the fast collapse itself in the light of bifurcation theory.
Such a description is however powerful because it pro-
vides the order of magnitude of the short time scale, as
soon as the transition results from the sweeping of the
bifurcation via a slow time-dependent parameter. In our
description the slow growth of pressure and density is con-
tinuous, and the collapse involving the whole star does not
happen because there is a drop of pressure, but because
the equilibrium state no more exists. This is not what hap-
pens in the onion models where each time one fuel runs
out, the star contracts because there is a drop of pressure,
heats up, and burns the next one. Our aim was to follow
the solution from the initial quasi-equilibrium state of the
star, up to the post-collapse state, by sweeping the bifur-
cation, without changing the equation of state, in order to
make clear that the collapse is an intrinsic process to any
system which displays such a global loss of equilibrium.
We study the solution close to the saddle-center, before
the collapse, and beyond the singularity.

We introduce in sect. 2 a kind of universal equation
valid for Hamiltonian systems (no dissipation) undergo-
ing a saddle-center bifurcation (merging of a center and a
saddle at the fold point) which is of the Painlevé I form.
We set up the hypothesis required for this equation to
describe the early stage of the loss of equilibrium in su-
pernovae.

Using a particular equation of state, we show in sect. 3
that by a slow decrease of a given parameter (here the
temperature), the series of equilibria do show a saddle-
center bifurcation.

In sect. 4 we study the approach towards the saddle-
center. We show that the full Euler-Poisson equations can
be reduced to a normal form of the Painlevé I form valid
at the first stage of the catastrophe, then we compare the
numerical solution of the full Euler-Poisson equations with
the solution of this universal equation.

Section 5 is devoted to the final stage of the collapse,
just before the appearance of the singularity (divergence
of the density and velocity). We show that the existence
of a self-similar collapsing solution which agrees with the
numerical simulations imposes that the gravity forces are
stronger than the pressure ones, a situation which was
not understood before. Usually the self-similar collapse,
also called “homologous” collapse, is treated by assum-
ing that pressure and gravity forces are of the same order
that leads to scaling laws such as ρ ∼ r−α for the den-
sity with parameter α equal to 2. This corresponds to the
Penston-Larson solution [4,5]. Assuming that the gravity
forces are larger than the pressure ones inside the core, we
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show first that a collapsing solution with α larger than 2
displays relevant asymptotic behavior in the outer part of
the core, then we prove that it requires that α takes the
value 24/11, which is larger than 2. We show that this re-
sult is actually in agreement with the numerical works of
Penston (see fig. 1 in [4]) and Larson (see fig. 1 in [5]) and
many others (see figs. 4, 9, 10 and the first stage of fig. 8,
in [6]) and that this small discrepancy between α = 2 and
α = 24/11 leads to non-negligible consequences for the
collapse characteristics. Contrary to the α = 2 case for
which the velocity remains finite close to the center and
tends to a constant supersonic value at large distances, our
self-similar solution (in the sense of Zel’dovich) displays
a velocity diverging at the center, and slowly vanishing
as the boundary of the star is approached (an important
point, see below).

Finally, in sect. 6, we describe the post-collapse dy-
namics without introducing any new ingredient in the
physics. We point out that just at the collapse time, there
is no mass in the center of the star, as in the case of the
Bose-Einstein condensation [7,8]; the mass begins to accu-
mulate in the inner core just after the singularity. Within
the same frame as before (gravity forces dominant with
respect to pressure ones), we derive the self-similar equa-
tions for the post-collapse regime and compare the solu-
tions with a generalized version of the parametric free-fall
solution proposed by Penston [4].

In the present study we try to solve a simple model in
a, what we believe, completely correct way. The interest of
our model and analysis is that we fully explain the tran-
sition from the slow evolution before the collapse to the
fast collapse itself. Continuing the evolution we observe
and explain the occurrence of a new finite time singular-
ity at the center, a singularity where the velocity field
diverges. This singularity is not the standard homologous
Penston-Larson collapse where all terms in the fluid equa-
tions are of the same order of magnitude. This singular-
ity is of free-fall dynamics because the pressure force be-
comes (locally) negligible compared to the gravitational
attraction1. The novelty of this solution is more than a
mathematical nicety because the laws for this collapse,
contrary to the ones of the homologous Penston-Larson
collapse, are such that the velocity of infall tends to zero
far from the center instead of tending to a constant su-
personic value. This makes possible that the shock wave
generated by the collapse escapes the center without the
additional help of neutrinos as needed in models where the
post-collapse initial conditions are a homologous Penston-
Larson collapse far from the center.

1 Of course, the free-fall solution of a self-gravitating gas is
well known [4]. However, it has been studied assuming either
a purely homogeneous distribution of matter or an inhomoge-
neous distribution of matter behaving as ρ(r, t) − ρ(0, t) ∼ r2

for r → 0, leading to a large distance decay ρ ∼ r−α with an
exponent α = 12/7. We show that these assumptions are not
relevant to our problem, and we consider for the first time a
behavior ρ(r, t) − ρ(0, t) ∼ r4 for r → 0, leading to the large
distance decay with the exponent α = 24/11.

2 The Painlevé equation and the scaling laws

A supernova explosion lasts about ten seconds, when mea-
sured by the duration of the neutrino burst in SN1987A,
and this follows a “slow” evolution over billions of years,
giving an impressive 1013 to 1014 ratio of the slow to fast
time scale. Such hugely different time scales make it a
priori impossible to have the same numerical method for
the slow and the fast dynamics. More generally it is a
challenge to put in the same mathematical picture a dy-
namics with so widely different time scales. On the other
hand the existence of such huge dimensionless numbers in
a problem is an incentive to analyze it by using asymp-
totic methods. Recently it has been shown [9] that such a
slow-to-fast transition can be described as resulting from
a slow sweeping across a saddle-node bifurcation. Let us
recall that in such a bifurcation two fixed points, one sta-
ble the other unstable, merge and disappear when a pa-
rameter (usually supposed as constant) is changed. In [9]
the transition is shown to be dynamical, because it occurs
when a parameter changes slowly as a function of time.
It means that the relevant parameter drifts in time until
it crosses a critical value at the time of the catastrophe,
this critical time being at the onset of saddle-node bifur-
cation for the dynamical system. Such a slow-to-fast tran-
sition is well known to show up in the van der Pol equa-
tion in the relaxation limit [10]. Interestingly, the analysis
shows that this slow-to-fast transition occurs on a time
scale intermediate between the slow and long time scale,
and that it is described by a universal equation solvable
by the Riccati method. This concerns dynamical systems
with dissipation, where the “universal equation” is first
order in time. The supernovae likely belong to the class of
dynamical catastrophes in our sense, because of the huge
difference of time scales, but one must turn to a model
of non-dissipative dynamics if one assumes that the early
post-bifurcation dynamics is described by inviscid fluid
dynamics.

Such a dynamical model of catastrophes without dissi-
pation and with time-dependent sweeping across a bifur-
cation is developed below and applied to supernovae. We
deal mostly with the early stage of the collapse, which we
assume to be described by compressible fluid mechanics,
without viscosity. Indeed the slow evolution of a star be-
fore the transition is a highly complex process not mod-
eled in this approach because of the large difference in
time scales: it is enough to assume that this slow evo-
lution makes a parameter cross a critical value where a
pair of equilibria (a saddle and a center) are merging.
The universal equation describing the saddle-center bi-
furcation is the Painlevé I equation. We explain how to
derive it from the fluid mechanical equations in the in-
viscid case, assumed to be valid for the interior of the
star. Although applications of the ideas developed below
could be found in more earthly situations like in sub-
critical bifurcation of Euler’s Elastica with broken sym-
metry or the venerable Archimedes problem of (loss of)
stability of floating bodies in an inviscid fluid [11], we
shall refer below explicitly to the supernova case only.
Our starting point is the following equation of Newtonian
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dynamics:
d2r0

dt2
= − ∂V

∂r0
, (1)

where r0 can be seen as the radius of the star and V (r0, t)
a time-dependent potential. No mass multiplies the accel-
eration, which is always possible by rescaling the potential
V (·). We shall derive later this equation for an inviscid
compressible fluid with gravitation and an equation of
state changing slowly as a function of time, for a radially
symmetric geometry and with a finite mass. Contrary to
the case studied in [9], this equation is second order in
time because one neglects dissipation compared to inertia.
The potential V (·) on the right-hand side represents the
potential energy of the star, with the contributions of
gravity and of internal energy [12]. At equilibrium the
right-hand side is zero. Given the potential V (·) this
depends on two parameters (linked to the total mass and
energy), r0 and another physical parameter which may
be seen as the temperature. Because of the long term
evolution of the star interior by nuclear reactions and
radiation to the outside, its temperature changes slowly.
We shall assume that this slow change of parameter makes
the equilibrium solution disappear by a saddle-center bi-
furcation when the temperature T crosses a critical value.

A saddle-center bifurcation, also called a Hamiltonian
saddle-node bifurcation, is sometimes called turning, or
tipping point instability, whereas the word “saddle-node”
(noeud-col in french) was coined by H. Poincaré in his
Ph.D. thesis. Such a bifurcation is a fairly standard prob-
lem treated by Emden [13] for a self-gravitating gas at
finite (and changing, but not as function of time) tempera-
ture in a spherical box. It was also discussed by Ebert [14],
Bonnor [15], and McCrea [16] by varying the pressure, and
by Antonov [17] and Lynden-Bell and Wood [18] by vary-
ing the energy. See Chavanis [19,20] for recent studies. A
saddle center is also present in the caloric curve of self-
gravitating fermions at finite temperature which has the
form of a “dinosaur’s neck” [21–23], in the mass-radius
relation of neutron stars determined by Oppenheimer and
Volkoff [24] when the mass crosses a critical value MOV

(see also sect. 109 of [12], fig. 52) and in the mass-radius
relation of boson stars [25–27].

As we do not solve the energy equation, the parameter
T could be any parameter describing the smooth changes
of the star interior prior to the fast transition. Following
the ideas of ref. [9], we look for a finite change in the
system on a time scale much shorter than the time scale
of the control parameter (here the temperature T ). Two
time scales are involved: the long time scale of evolution
of T , denoted as θ below, and the short time scale τ which
is the fundamental period of a pressure oscillation in the
star. Our approach will show that the early stage of the
collapse is on a time scale intermediate between the fast
and slow scales and give a precise definition of the initial
conditions for the fast process.

Let us expand the potential V (·) in Poincaré normal
form near the saddle-center bifurcation

V = −aR +
b

3
R3 + . . . . (2)

In the expression above, R, a relative displacement, can be
seen as the difference between rc, the value of the radius
of the star at the saddle-center bifurcation and its actual
value, R = (r0−rc)/rc, a quantity which decreases as time
increases when the star collapses. Actually the quantity R
will be seen later as the Lagrangian radial coordinate, a
function depending on r, the radial distance. The saddle-
center bifurcation is when the —now time-dependent—
coefficient a of eq. (2) crosses 0. Setting to zero the time
of this crossing, one writes a = −ct, where c, a constant,
is small because the evolution of V is slow. This linear
time dependence is an approximation because a(t) is, in
general, a more complex function of t than a simple ramp.
However, near the transition, one can limit oneself to this
first term in the Taylor expansion of a(t) with respect to t,
because the transition one is interested in takes place on a
time scale much shorter than the typical time of change of
a(t). Limiting oneself to displacements small compared to
rc, one can keep in V (R) terms which are linear and cubic
(the coefficient b is assumed positive) with respect to R
because the quadratic term vanishes at the saddle-center
transition (the formal statement equivalent to this lack of
quadratic term in this Taylor expansion of V (R) is the
existence of a non-trivial solution of the linearized equa-
tion at the bifurcation). Moreover higher order terms in
the Taylor expansion of V (·) near R = 0 are neglected in
this analysis because they are negligible with the scaling
law to be found for the magnitude of R near the transi-
tion. This is true at least until a well-defined time where
the solution has to be matched with the one of another
dynamical problem, valid for finite R. At t = 0, the poten-
tial V (·) is a cubic function of R, exactly the local shape
of a potential in a metastable state. For a and b positive,
the potential has two extrema, one corresponding to a sta-
ble equilibrium point at R =

√
a/b and one unstable at

R = −
√

a/b. In the time dependent case, the potential
evolves as shown in fig. 1 and eqs. (1)-(2) become

d2R

dt2
= R̈ = −ct − bR2, (3)

where the parameter c is supposed to be positive, so that
the solution at large negative time is close to equilibrium
and positive, crosses zero at a time close to zero and di-
verges at finite positive time.

To show that the time scale for the dynamical saddle-
center bifurcation is intermediate between the long time
scale of the evolution of the potential V (·) and the short
time scale of the pressure wave in the star, let us derive
explicitly these two relevant short and long time scales.
For large negative time the solution of eq. (3) is assumed
to evolve very slowly such that the left-hand side can be
set to zero. It gives

R(t) �
√

c

b
(−t) , (4)

which defines the long time scale as θ = b/c (recall that
R, a relative displacement scaled to the star radius rc, has
no physical scale).
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Fig. 1. Potential evolution close to a saddle-center, eq. (2),
with b = c = 1 and two values of a = −ct; t = −2 for the blue
curve, t = 2 for the red dashed curve.

As for the short time scale, it appears close to the
time t = t∗ where the solution of eq. (3) tends to minus
infinity. In this domain the first term in the right-hand side
is negligible with respect to the second one, the equation
reduces to R̈ = −bR2, which has the characteristic time
τ = 1/

√
b.

Let us scale out the two parameters b, c of eq. (3). De-
fining R̂ = R/rs and t̂ = t/t0 the original equation takes
the scaled form

d2R̂

dt̂2
= −t̂ − R̂2, (5)

when setting c = rs/t30 and b = 1/(rst
2
0). Inversely, t0 =

1/(bc)1/5 and rs = c2/5/b3/5. The solution of eq. (5) is
called the first Painlevé transcendent, and cannot be re-
duced to elementary functions [28].

A non-trivial question is the sign of b and c which can-
not be decided in a simple way from the general features
of the model. To give sense to this theory, the bifurca-
tion must occur in the forward time direction, namely b
and c must have the same sign for this theory to make
sense. This sign common to b and c determines if the ra-
dius R grows or decays just after the bifurcation. It is
commonly assumed that, in the early stage of supernova
explosion, the star collapses onto itself, and then that this
inward motion is reversed to yield the observed explosion,
the mechanism of reversal being not well understood yet.
In the model to be studied later, the radius actually de-
creases after the bifurcation, as believed to occur in the
early stage of supernovae explosions. But it is well possible
that in other models of equation of state with a saddle-
center bifurcation, the early stage and perhaps even all
the dynamics triggered by the bifurcation is an outward
motion, without any phase of collapse.

The writing of the Painlevé equation in its parameter
free form yields the characteristic time scale t0 of eq. (3)
in terms of the short and long times,

t0 = (θτ4)1/5. (6)

This intermediate time is such that τ � t0 � θ; it could
be of the order of several hours when taking θ ∼ one billion

−20 −15 −10 −5
t

−30

−20

−10

10
R

Fig. 2. Numerical solution of eq. (5), or eq. (3) with b = c = 1,
for two different initial conditions taken at time ti = −20; i) re-
lation (8) for the blue curve without any oscillation; ii) R(ti) =√
−ti + 0.5 and R′(ti) = − 1

2
√−ti

for the red oscillating curve.

years, τ ∼ 10 sec. The corresponding spatial extension R
is of order

rs =
(τ

θ

)2/5

, (7)

much smaller than unity. The one-fifth power in eqs. (6)
and (7) is “typical” of Painlevé I equation, which has a
symmetry expressed in terms of the complex fifth roots of
unity.

To solve eq. (5) we have to define the initial conditions.
Choosing the initial conditions at large negative time ti,
we may assume that the asymptotic relation (4) is fulfilled
at this time, that gives,

⎧
⎪⎪⎨

⎪⎪⎩

R̂(t̂i) =
√

−t̂i,

˙̂
R(t̂i) = − 1

2
√
−t̂i

.
(8)

The numerical solution of eq. (5) is drawn in fig. 2 leading
to a finite time singularity. With the initial conditions (8)
the solution is a non-oscillating function (blue curve) di-
verging at a finite time t̂∗ � 3.4.

But we may assume that, at very large negative time,
the initial conditions slightly differ from the asymptotic
quasi-equilibrium value (8). In that case the solution dis-
plays oscillations of increasing amplitude and period as
time increases, in agreement with a WKB solution of the
linearized problem. Let us put R̂(t̂) ≈

√
−t̂+δR̂, δR̂ small

which satisfies the linear equation

δ
¨̂
R = −2

√
−t̂δR̂. (9)

A WKB solution, valid for (−t̂ ) very large, is

δR̂ =
∑

±
c±(−t̂)−1/4e±i 4

√
2

5 (−t̂)5/4
. (10)

It represents oscillations in the bottom of the potential
V (R̂, t̂) = t̂R̂ + R̂3/3 near R̂ =

√
−t̂. The two complex
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conjugate coefficients c± defining the amplitudes are ar-
bitrary and depend on two real numbers. Therefore, the
cancelation of the oscillations defines uniquely a solution
of the Painlevé I equation. This is illustrated in fig. 2 where
the blue curve has no oscillation (see above) while the red
curve displays oscillations of increasing period and a shift
of the divergence time.

Near the singularity, namely just before time t̂ = t̂∗,
the dominant term on the right-hand side of eq. (5) is R̂2

so that R̂ becomes approximately R̂(t) � −6/(t̂∗ − t̂)2, or
in terms of the original variables R and t,

R(t) � −6rs

(
t0

t∗ − t

)2

. (11)

This behavior will be compared later to the full Euler-
Poisson model (see fig. 16 and related discussion). Note
that this divergence is completely due to the nonlinearity,
and has little to do with a linear instability. The applica-
bility of this theory requires R � 1, because it relies on
the Taylor expansion of V (·) in eq. (1) near r0 = rc. It
is valid if |t − t∗| � τ . Therefore the collapse (we mean
by collapse the very fast dynamics following the saddle-
center bifurcation) can be defined within a time interval
of order τ , the center of this interval being the time where
the solution of eq. (5) diverges, not the time where the
linear term in the same equation changes sign. Moreover
the duration of the early stage of the collapse is, physi-
cally, of order (θτ4)1/5, much shorter than the time scale
of evolution of the temperature, but much longer than the
elastic reaction of the star interior.

The blow-up of the solution of eq. (3) at finite time
does not imply a physical singularity at this instant. It
only shows that, when t approaches t∗ by negative values,
R(t) grows enough to reach an order of magnitude, here
the radius of the star, such that the approximation of V
by the first two terms (linear and cubic with respect to
R) of its Taylor expansion is no longer valid, imposing to
switch to a theory valid for finite displacements. In this
case, it means that one has to solve, one way or another,
the full equations of inviscid hydrodynamics, something
considered in sect. 3. A warning at this stage is necessary:
we have to consider more than one type of finite time sin-
gularity in this problem. Here we have met first a singular-
ity of the solution of the Painlevé I equation, a singularity
due to various approximations made for the full equations
which disappears when the full system of Euler-Poisson
equations is considered. But, as we shall see, the solution
of this Euler-Poisson set of dynamical equations shows a
finite time singularity also, which is studied in sect. 5 and
which is related directly to the supernova explosion.

Below we assume exact spherical symmetry, although
non-spherical stars could be quite different. A given star
being likely not exactly spherically symmetric, the exact
time t∗ is not so well defined at the accuracy of the short
time scale τ because it depends on small oscillations of
the star interior prior to the singularity (the amplitude
of those oscillations depends on the constants c± in the
WKB part of the solution, and the time t∗ of the singu-
larity depends on this amplitude). One can expect those

oscillations to have some randomness in space and so not
to be purely radial. The induced loss of sphericity at the
time of the collapse could explain the observed expulsion
of the central core of supernovae with large velocities, up
to 500 km per second [29] a very large speed which requires
large deviations to sphericity. However there is an argu-
ment against a too large loss of sphericity: the time scale
t0 for the part of the collapse described by the Painlevé
equation is much longer than τ , the typical time scale for
the evolution of the inside of the star. Therefore one may
expect that during a time of order t0, the azimuthal het-
erogeneities are averaged, restoring spherical symmetry on
average on the longer time scale t0. However this does not
apply if the star is intrinsically non-spherically symmetric
because of its rotation.

Within this assumption of given slow dependence with
respect to a parameter called T , we shall derive the dy-
namical equation (3) from the fluid equations with a gen-
eral pressure-density relation and the gravity included. To
streamline equations and explanations, we shall not con-
sider the constraint of conservation of energy (relevant on
the fast time scale).

3 Euler-Poisson system for a barotropic star
presenting a saddle-center

3.1 Barotropic Euler-Poisson system

We shall assume that the star can be described as a com-
pressible inviscid fluid with a barotropic equation of state
p = p(ρ). The relevant set of hydrodynamic equations are
the barotropic Euler-Poisson system. These are dynamical
equations for a compressible inviscid fluid with a pressure-
density relation, including the gravitational interaction via
Poisson equation. Note that there is no dynamical equa-
tion for the transport of energy. They read

∂ρ

∂t
+ ∇ · (ρu) = 0, (12)

ρ

[
∂u
∂t

+ (u · ∇)u
]

= −∇p − ρ∇Φ, (13)

ΔΦ = 4πGρ, (14)

where u is the fluid velocity vector, ρ the mass density,
and G Newton’s constant. Using the equation of continu-
ity (12), the momentum equation (13) may be rewritten as

∂

∂t
(ρu) + ∇(ρu ⊗ u) = −∇p − ρ∇Φ. (15)

The potential energy of this self-gravitating fluid is V =
U + W where

U =
∫

dr ρ

∫ ρ

dρ′
p(ρ′)
ρ′2

, (16)

is the internal energy and

W =
1
2

∫
ρΦdr (17)
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is the gravitational energy. The internal energy can be
written as U =

∫
[ρh(ρ)−p(ρ)]dr =

∫
H(ρ)dr where we have

introduced the enthalpy h(ρ), satisfying dh(ρ) = dp(ρ)/ρ,
and its primitive H(ρ) =

∫ ρ

0
h(ρ)dρ.

3.2 Hydrostatic equilibrium and neutral mode

In this section we briefly recall different formulations of the
equilibrium state of a self-gravitating gas. From eq. (13),
the condition of hydrostatic equilibrium writes

∇p + ρ∇Φ = 0. (18)

Dividing this equation by ρ, taking the divergence of the
resulting expression, using Poisson equation (14), and re-
calling that p = p(ρ) for a barotropic gas, we obtain a
differential equation for ρ that is

∇ ·
[
p′(ρ)

ρ
∇ρ

]
+ 4πGρ = 0. (19)

For a barotropic equation of state by definition p = p(ρ).
The condition of hydrostatic equilibrium (18) implies ρ =
ρ(Φ). Substituting this relation in Poisson equation (14),
we obtain a differential equation for Φ that is

ΔΦ = 4πGρ(Φ). (20)

Introducing the enthalpy, satisfying ∇h = ∇p/ρ, the
condition of hydrostatic equilibrium (18) can be rewrit-
ten as

∇h + ∇Φ = 0. (21)

Therefore, at equilibrium, h(r) = −Φ(r) + C where C
is a constant. Since the gas is barotropic, we also have
ρ = ρ(h). Taking the divergence of eq. (21) and using
Poisson equation (14), we obtain a differential equation
for h that is

Δh + 4πGρ(h) = 0. (22)

These different formulations are equivalent. In the follow-
ing, we will solve the differential equation (22).

To determine the dynamical stability of a steady state
of the Euler-Poisson system (12)-(14), we consider a small
perturbation about that state and write f(r, t) = f(r) +
δf(r, t) for f = (ρ,u, Φ) with δf(r, t) � f(r). Linearizing
the Euler-Poisson system about that state, and writing the
perturbation as δf(r, t) ∝ eλt, we obtain the eigenvalue
equation

λ2δρ = ∇ · [ρ(∇δh + ∇δΦ)] . (23)

The neutral mode (λ = 0) which usually signals the
change of stability is the solution of the differential equa-
tion

∇δh + ∇δΦ = 0. (24)

Taking the divergence of this equation and using Poisson
equation (14), it can be rewritten as

Δδh + 4πGρ′(h)δh = 0. (25)

This equation may also be written in terms of δρ by using
δh = p′(ρ)δρ/ρ. We get

Δ

(
p′(ρ)

ρ
δρ

)
+ 4πGδρ = 0. (26)

In the following, we will solve the differential equation (25).

3.3 An isothermal equation of state with a polytropic
envelope implying a saddle-center

The series of equilibria of an isothermal self-gravitating
gas with p = ρT is known to present a saddle-center bifur-
caion [13,19]. Therefore a self-gravitating isothermal gas
is a good candidate for our investigation. However, it has
the undesirable feature to possess an infinite mass because
its density decreases too slowly (as r−2) at large distances.
Therefore, to have a finite mass, it must be confined ar-
tificially into a “box”. In order to skip this difficulty, we
propose to use here an equation of state that is isother-
mal at high densities and polytropic at low densities, the
polytropic equation of state serving as an envelope that
confines the system in a finite region of space without ar-
tificial container. Specifically, we consider the equation of
state2

p(ρ) = ρ∗T
(√

1 + ρ/ρ∗ − 1
)2

. (27)

For ρ → +∞, it reduces to the isothermal equation of
state p = ρT . For ρ → 0, it reduces to the polytropic
equation of state p = Kρ2 with polytropic index γ = 2
and polytropic constant K = T/(4ρ∗).

The enthalpy function h(ρ) defined by dh = dp/ρ is
explicitly given by

h(ρ) = 2T ln
(
1 +

√
1 + ρ/ρ∗

)
− 2T ln(2), (28)

where the constant of integration has been determined
such that h(ρ = 0) = 0. With this choice, the enthalpy
vanishes at the edge of the star. The inverse relation writes

ρ(h) = 4ρ∗
(
eh/T − eh/2T

)
. (29)

In the following, it will be convenient to use dimen-
sionless variables. The parameters regarded as fixed are
ρ∗, M , and G. From ρ∗ and M we can construct a length

2 This equation of state is inspired by the study of self-
gravitating boson stars in general relativity [25–27]. Such an
equation of state could hold in the core of neutron stars be-
cause of its superfluid properties [27]. The neutrons (fermions)
could form Cooper pairs and behave as bosons. In this context
ρc2 represents the energy density and the parameter T has an
interpretation different from the temperature (in the core of
neutron stars T is much less than the Fermi temperature or
than the Bose-Einstein condensation temperature so it can be
taken as T = 0). We use here this equation of state with a
different interpretation.
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L∗ = (M/ρ∗)1/3. Then, we introduce the dimensionless
quantities

ρ̃ =
ρ

ρ∗
, r̃ =

r

L
, Φ̃ =

Φ

Gρ∗L2
(30)

and

T̃ =
T

Gρ∗L2
, p̃ =

p

GL2ρ2
∗

, t̃ = t
√

Gρ∗. (31)

Working with the dimensionless variables with tildes
amounts to taking G = ρ∗ = M = 1 in the initial equa-
tions, a choice that we shall make in the following.

3.4 Equilibrium solution and temperature-radius
relation

The equilibrium solution is obtained by solving eq. (22)
with eq. (29). Using the dimensionless variables defined in
sect. 3.3, assuming spherical symmetry, and setting r̂ =
r/
√

T , ĥ = h/T , Φ̂ = Φ/T , ρ̂ = ρ, and M̂ = M/T 3/2, we
obtain

ĥ,r̂2 +
2
r̂
ĥ,r̂ + 4πρ̂(ĥ) = 0, (32)

where
ρ̂(ĥ) = 4

(
eĥ − eĥ/2

)
. (33)

Using Gauss theorem Φ,r = M(r)/r2, where

M(r) =
∫ r

0

ρ(r′)4πr′
2 dr′, (34)

is the mass profile, and the equilibrium relation Φ,r =−h,r,
we obtain Φ̂,r̂ = −ĥ,r̂ = M̂(r̂)/r̂2 that allows us to deter-
mine the mass profile from the enthalpy profile using3

M̂(r̂) = −r̂2ĥ,r̂. (35)

The boundary conditions of eq. (32) at r̂ = 0 are ĥ(0)=
ĥ0 and ĥ,r̂(0) = 0. For a given value of ĥ0, the smallest
root of ĥ(r̂), which is also the one of ρ̂(r̂), see figs. 3 and 4,
defines the normalized radius r̂0 of the star. The radius r0

of the star is therefore r0 =
√

T r̂0. On the other hand,
Gauss theorem applied at the surface of the star where
M = 1 (i.e. M̂0 = 1/T 3/2) leads to ĥ,r̂(r̂0) = −1/(

√
Tr2

0).
From these equations, we obtain4

r0 =

(
r̂0

−ĥ,r̂(r̂0)

)1/3

, T =
1

(−r̂2
0ĥ,r̂(r̂0))2/3

. (36)

The solution of eq. (32), drawn in fig. 4 solid line, has
a single free parameter ĥ0 since its Taylor expansion near

3 Equation (35) may also be obtained by multiplying eq. (32)
by r̂2 and integrating between 0 and r̂.

4 We can come back to the original (dimensional) variables

by making the substitution R → R/L = Rρ
1/3
∗ /M1/3 and T →

T/(Gρ∗L
2) = T/(Gρ

1/3
∗ M2/3).

0.1 0.2 0.3 0.4 0.5 r^
5

10

15

20

25

ρ^

Fig. 3. Density ρ̂(r̂) versus the radial variable at the saddle-

center (T = Tc, or ĥ0 = 2.296). The density vanishes at the
edge of the star indicated by the arrow (r̂ = r̂0).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 r^
−0.5

0.5
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j,h
^

Fig. 4. Numerical solution of eqs. (32) and (37), radial profile

of the enthalpy ĥ(r̂) (solid red curve) and neutral mode j(r̂)

(dashed blue curve) for ĥ0 = 2.296 corresponding to the saddle-
center, point A of fig. 5.

r̂ = 0 is like ĥ= ĥ0+h2r̂
2+. . ., with ĥ0 free, h2 = − 2π

3 ρ̂(ĥ0),
and so on for the higher order coefficients. By varying ĥ0

from 0 to +∞ we can obtain the whole series of equilibria
r0(T ) giving the radius of the star as a function of the tem-
perature, using the quantities ĥ0 (or r̂0) as a parameter.
The result is a spiralling curve shown in fig. 5 where only
the upper part is stable, the solution losing its stability
at the saddle-center (turning point A), as studied in the
next subsection5. The saddle-center is found numerically

5 This temperature-radius relation T (R) is the counterpart
of the mass-radius relation M(R) of boson stars in general
relativity, that also presents a spiralling behavior [27]. The
dynamical stability of the configurations may be determined
from the theory of Poincaré on the linear series of equilibria
as explained in [30]. If we plot the temperature T as a func-

tion of the parameter ĥ0, a change of stability can occur only
at a turning point of temperature. Since the system is stable
at high temperatures (or low ĥ0) because it is equivalent to a
polytrope n = 1 that is known to be stable, we conclude that
the upper branch in fig. 5 is stable up to the turning point A.
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Fig. 5. Radius r0 = r̂0M̂
−1/3
0 versus temperature T = M̂

−2/3
0 ,

obtained by solving eqs. (32)-(36) (increasing the input param-

eter ĥ0).

to occur at ĥ0 = 2.296 . . ., or ρ̂0 = 27.1299 . . ., that leads
to the following critical values for the mass, temperature
and radius respectively, M̂c = 0.52, Tc = 1.546 . . . and
r̂c = 0.385 . . . (hence rc =

√
Tcr̂c = 0.479 . . .). The center

of the spiral is obtained for ĥ0 → ∞.
There is a saddle-center bifurcation when eq. (32) lin-

earized about the profile ĥ(r̂) determined previously has a
non-trivial solution. This corresponds to the neutral mode
δh defined by the unscaled eq. (25). In terms of the scaled
variables this linearized equation reads

Ω[j(r̂)] = j,r̂2 +
2
r̂
j,r̂ + 4π

dρ̂

dĥ
j(r̂) = 0, (37)

where Ω is a linear operator acting on function j of r̂. Let
us precise that we have the following boundary conditions:
arbitrary j(0) and j′(0) = 0. Furthermore, we automati-
cally have j′(r̂0) = 0 since δM(r0) = 0. The neutral mode
j(r̂), valid at the critical temperature Tc, is pictured in
fig. 4, dashed blue line. We consider below the dynamics
of the function M(r, t) which is the mass contained inside
the sphere of radius r in the star.

4 Dynamics close to the saddle-center:
derivation of Painlevé I equation

In this section we show that the dynamics close to the
saddle-center reduces to Painlevé I equation. This prop-
erty will be proved first by showing that the normal form
of the full Euler-Poisson system (12)-(14) is of Painlevé I
form, secondly by comparing the normal form solutions to
the full Euler-Poisson ones derived by using a numerical
package for high-resolution central schemes [31].

4.1 Simplification of the hydrodynamic equations close
to the saddle-center

We now consider the dynamical evolution of the star, in
particular its gravitational collapse when the temperature

Then, the series of equilibria loses a mode of stability at each
turning point of temperature T and becomes more and more
unstable.

falls slowly below Tc. In this section we use a simplified
model where advection has been neglected, an approx-
imation valid in the first stage of the collapse only. In
the following we restrict ourselves to spherically symmet-
ric distributions, likely an approximation in all cases, and
certainly not a good starting point if rotation is present.
However this allows a rather detailed analysis without,
hopefully, forgetting anything essential. Defining u as the
radial component of the velocity, let us estimate the or-
der of magnitude of the various terms in Euler’s equa-
tions during the early stage of the collapse, namely when
eq. (3) is valid (this assuming that it can be derived from
the fluid equations, as done below). The order of mag-
nitude of u,t is the one of R̈, that is Ṙ/t0, with t0 the
characteristic time defined by eq. (6). The order of mag-
nitude of the advection term uu,r is Ṙ2/r0 (here R is di-
mensional), because one assumes (and will show) that the
perturbation during this early stage extends all over the
star. Therefore uu,r ∼ u,t(R/r0) is smaller than u,t by a
factor R/r0, which is the small a-dimensional characteris-
tic length scale defined by the relation (7). Neglecting the
advection term in eqs. (13) and (15) gives

∂

∂t
(ρu) = ρ

∂

∂t
u = −∇p − ρ∇Φ. (38)

In the spherically symmetric case it becomes

u,t = −1
ρ
p,r −

4πG

r2

∫ r

0

dr′r′2ρ(r′, t), (39)

where we used Gauss theorem

Φ,r =
4πG

r2

∫ r

0

dr′r′2ρ(r′, t), (40)

derived from Poisson equation (14). Taking the divergence
of the integro-differential dynamical equation (39) allow-
ing to get rid of the integral term, we obtain

(
2
r
u + u,r

)

,t

= −
(

h,r2 +
2
r
h,r + 4πGρ(h)

)
, (41)

which is the dynamical equation for the velocity field.
This equation has been derived from the Euler-Poisson
system (12)-(14) where the advection has been neglected,
that is valid during the time interval of order t0 before the
critical time. To derive the Painlevé I equation from the
dynamical equation (41) we consider its right-hand side
as a function of ρ with an equation of state of the form
p(ρ) = ρ∗Tf(ρ/ρ∗) depending on a slow parameter T , and
we expand the solution near a saddle-center bifurcation
which exists when there is more than one steady solution
of eq. (41) for a given total mass M = 4π

∫ ∞
0

dr′r′2ρ(r′)
and temperature T , two solutions merging and disappear-
ing as the temperature crosses a critical value Tc. This oc-
curs for the equation of state defined by eq. (27), see fig. 5
where a saddle-center exists at point A. Although this
formulation in terms of the velocity field u(r, t) is closely
related to the heuristic description developed in sect. 2, in
the following we find it more convenient to work in terms
of the mass profile M(r, t). Obviously the two formulations
are equivalent.



Page 10 of 27 Eur. Phys. J. E (2014) 37: 26

4.2 The equation for the mass profile M(r, t)

In view of studying the dynamics of the solution close to
the saddle-center, let us assume a slow decrease of the
temperature versus time, of the form T = Tc(1 − γ′t)
with positive γ′ in order to start at negative time from
an equilibrium state. Taking the time derivative of the
equation of continuity (12) and using eq. (38), we get the
two coupled equations6

∂2ρ

∂t2
= ∇ · (∇p + ρ∇Φ), (42)

ΔΦ = 4πGρ. (43)

According to the arguments given in sect. 4.1, these equa-
tions are valid close to the saddle-center during the early
stage of the collapse7. By contrast, deep in the collapse
regime (see sects. 5 and 6) the advection term is important
and we must return to the full Euler-Poisson system (12)-
(14).

In the following, we use the dimensionless variables of
sect. 3.3. In the spherically symmetric case, using Gauss
theorem (40), the system (42)-(43) yields

∂2ρ

∂t2
=

1
r2

[
r2p,r + ρ

∫ r

0

dr′4πr′2ρ(r′)
]

,r

. (44)

It has to be completed by the boundary conditions im-
posing zero mass at the center of the star, and a constant
total mass ∫ r0

0

dr′4πr′2ρ(r′, t) = 1, (45)

where r0 is the star radius (practically the smallest root
of ρ(r) = 0). Let us define the variable

M(r, t) =
∫ r

0

dr′4πr′2ρ(r′, t), (46)

which represents the mass of fluid contained inside a
sphere of radius r at time t. Multiplying the two sides
of eq. (44) by 4πr2, and integrating them with respect to
the radius, we obtain the dynamical equation for the mass
profile M(r, t)

∂2M(r, t)
∂t2

= 4πr2p,r +
1
r2

M,rM, (47)

where the term p,r = p′(ρ)ρ,r has to be expressed as a
function of ρ(r, t) = 1

4πr2 M,r and ρ,r(r, t) = 1
4πr2 (M,r2 −

2
r M,r). Using the relation (27), one has

p′(ρ) = T

(
1 − 1√

1 + ρ

)
. (48)

6 These equations are similar to the Smoluchowski-Poisson
system (describing self-gravitating Brownian particles in the
strong friction limit) studied in [32] except that it is second
order in time instead of first order in time.

7 These equations are also valid for small perturbations
about an equilibrium state since we can neglect the advection
term u · ∇u at linear order.

The first term of eq. (47) becomes

4πr2p,r = TL(M)g(M,r) (49)

with ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L(M) = M,r2 − 2
r
M,r ,

g(M,r) = 1 − 1
√

1 + 1
4πr2 M,r

.
(50)

Introducing this expression into eq. (47), the dynamical
equation for M(r, t) writes

∂2M(r, t)
∂t2

= TL(M)g(M,r) +
1
r2

M,rM. (51)

The boundary conditions to be satisfied are
⎧
⎨

⎩

M(0, t) = 0,

M(r0(t), t) = 1 = 4π
∫ r0(t)

0

dr′r′2ρ(r′, t),
(52)

In the latter relation the radius of the star r0(t) depends
on time. However this dependence will be neglected be-
low, see eq. (68), because we ultimately find that the
star collapses, therefore its radius will decrease, leading
to r0(t) < rc, or M(r0(t), t) = M(rc) as time goes on.

4.3 Equilibrium state and neutral mode

A steady solution of eq. (51) is determined by

TL(M)g(M,r) +
1
r2

M,rM = 0. (53)

Using Gauss theorem Φ,r = M(r)/r2, and the equilibrium
relation Φ,r = −h,r, we can easily check that eq. (53) is
equivalent to eq. (32). We now consider a small perturba-
tion about a steady state and write M(r, t) = M(r) +
δM(r, t) with δM(r, t) � M(r). Linearizing eq. (51)
about this steady state and writing the perturbation as
δM(r, t) ∝ eλt, we obtain the eigenvalue equation

λ2δM = T [L(δM)g(M,r) + L(M)g′(M,r)δM,r]

+
1
r2

(MδM),r. (54)

The neutral mode, corresponding to λ = 0, is determined
by the differential equation

T [L(δM)g(M,r) + L(M)g′(M,r)δM,r] +
1
r2

(MδM),r = 0.

(55)
Using Gauss theorem δΦ,r = δM(r)/r2, and the relation
δΦ,r = −δh,r satisfied at the neutral point (see sect. 3.2),
we can check that eq. (55) is equivalent to eq. (37). This
implies that the neutral mass profile is given by

δM(r) = −r2j,r. (56)
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4.4 Normal form of the mass profile M(r, t)

The derivation of the normal form close to the saddle-
center proceeds mainly along the lines of [32]8. The mass
profile is expanded as

M(r, t)=M (c)(r)+ εM (1)(r, t)+ ε2M (2)(r, t)+ . . . , (57)

where M (c)(r) is the equilibrium profile at T = Tc (see
above) drawn in solid line in fig. 6, and ε is a small pa-
rameter which characterizes a variation of the temperature
with respect to its value at the collapse. We set

T = Tc(1 − ε2T (2)), (58)

which amounts to defining ε2T (2) = γ′t, and rescaling the
time as t = t′/ε1/2 (this implies that γ′ ∼ ε5/2 is a small
quantity). Substituting the expansion (57) into eq. (51),
we get at leading order the equilibrium relation

TcL(c)g(c) +
1
r2

M (c)
,r M (c) = 0, (59)

which has to satisfy the boundary conditions

M (c)(0) = M (c)
,r (0) = 0; M (c)(rc) = 1. (60)

To order 1 we have

Tc

(
L(1)g(c) + L(c)g′(c)M (1)

,r

)
+

1
r2

(
M (1)M (c)

)

,r
= 0,

(61)
and to order 2

∂2M (1)(r, t′)
∂t′2

= TcF (2) +
1
r2

[
(M (2)M (c)),r + M (1)M (1)

,r

]
,

(62)
where

F (2) = F (2)
1 + F (2)

2 + F (2)
3 , (63)

with

F (2)
1 =

(
L(2) − T (2)L(c)

)
g(c), (64)

F (2)
2 = L(1)g′(c)M (1)

,r , (65)

F (2)
3 = L(c)

[
g′(c)M (2)

,r +
g′′(c)

2
(M (1)

,r )2
]

, (66)

where L(c) = L(M (c)), L(n) = L(M (n)), g(c) = g(M (c)
,r ),

g′(c) = ( dg
dM,r

)(c) and g′′(c) = ( d2g
dM2

,r
)(c). The r-dependent

quantities can be written in terms of the equilibrium den-
sity function ρ(c)(r) as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(c) = 4πr2ρ
(c)
,r ,

g(c) = 1 − 1
√

1 + ρ(c)
,

g′(c) =
1

8πr2(1 + ρ(c))3/2
,

g′′(c) = − 3
4(4πr2)2(1 + ρ(c))5/2

.

(67)

8 The authors of [32] study the dynamics of Smoluchowski-
Poisson equations close to a saddle-node but for a fixed value
of the temperature T → T−

c .
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Fig. 6. Mass M̂ (solid blue line) inside the star versus the
radial variable r̂ at the saddle-center, solution of eqs. (32)-

(34) for T = Tc, i.e. ĥ0 = 2.296. The dashed red line is for
ζ(r̂), solution of eq. (83) with appropriate initial conditions for
solving the adjoint problem (in this caption, we have restored
the “hat” on the variables).

The boundary conditions are
{

M (n)(0, t′) = 0; M
(n)
,r (0, t′) = 0;

M (n)(rc, t
′) = 0.

(68)

Let us rescale the quantities in eqs. (44)-(68) by using
the critical value Tc for the temperature in the rescaled
variables. We thus define T̂ = T/Tc, r̂ = r/

√
Tc, t̂ = t,

M̂ = M/T
3/2
c , ĥ = h/Tc, and ρ̂ = ρ. This rescaling leads

to the same expressions as the unscaled ones in eqs. (44)-
(68), except that Tc is set to one. Furthermore, at the
critical point, the rescaled variables coincide with those
introduced in sect. 3.4. In the following, we drop the su-
perscripts to simplify the notations.

The foregoing equations have a clear interpretation.
At zeroth order, eq. (59) corresponds to the equilibrium
state (53), equivalent to eq. (32), at the critical point Tc.
The critical mass profile is drawn in fig. 6 solid line. At
order 1, eq. (61) has the same form as the differential
equation (55), equivalent to eq. (37), determining the neu-
tral mode (corresponding to the critical point). Because
eq. (61) is linear, its solution is

M (1)(r, t′) = A(1)(t′)F (r), (69)

where
F (r) = δM(r) = −r2j,r, (70)

according to eq. (56). This solution, drawn in fig. 7(a),
thick black line, fulfills the boundary conditions (68).
The corresponding perturbation of the density profile
ρ(1)(r, t′) = A(1)(t′)δρ(r) is drawn in fig. 7(b), where

δρ(r) =
F,r

4πr2
= j(r)

(
dρ

dh

)

(c)

. (71)

At first order it can be shown that a small radial de-
viation S(1)(r, t) of a particle being at time zero at a
given position r and moving at time t at r +S(r, t) writes
S(1)(r, t) = A(t)S(r), with S(r) = j,r

1
4πρ(c) . At order 2,
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Fig. 7. Comparison between theory (thick black curves) and
the numerics (thin colored curves) for the first order terms:
(a) mass M (1)(r, t); (b) density ρ(1)(r, t), in scaled variables.
The numerical curves correspond to the times t = 0.2 to 0.6 in
fig. 8.

eq. (62) becomes

F (r)Ä(1)(t′) = −T (2)L(c)g(c) + D(F )[A(1)]2 + C(M (2)),
(72)

where

D(F ) =
1
r2

FF,r +
1
2
L(c)g′′(c)F 2

,r + g′(c)L(F )F,r, (73)

and

C(M (2)) = L(2)g(c) +
1
r2

(M (2)M (c)),r + L(c)g′(c)M (2)
,r .

(74)
To write the dynamical equation for A(1)(t) in a normal

form, we multiply eq. (72) by a function ζ(r) and integrate
over r for 0 < r < rc, where rc is the radius of the star
at T = Tc. We are going to derive the function ζ(r) so
that the term C(M (2)) disappears after integration (see
appendix A for details about the boundary conditions).
Introducing the slow decrease of the temperature versus
time, T (2) ∼ γ′t/ε2, and making the rescaling A = εA(1)

to eliminate ε (we note that A(t) is the true amplitude of
the mass profile δM(r, t)), the result writes

Ä(t) = γ̃t + KA2, (75)

where

γ̃ = −γ′
∫ rc

0
drL(c)(r)g(c)(r)ζ(r)
∫ rc

0
drF (r)ζ(r)

(76)

is found equal to γ̃ = 120.2 . . . γ′ and

K =

∫ rc

0
drG(r)ζ(r)

∫ rc

0
drF (r)ζ(r)

, (77)

with

G(r) =
1
2
L(c)(r)g′′(c)(r)F 2

,r + g′(c)(r)F,r

(
F,r2 − 2

r
F,r

)

+
1
r2

F (r)F,r (78)

is found to have the numerical value K = 12.32 . . . . We
have therefore established that the amplitude A(t) of the
mass profile δM(r, t) satisfies Painlevé I equation.

By definition the function ζ must satisfy, for any func-
tion M (2)(r), the integral relation

∫ rc

0

dr C(M (2))(r)ζ(r) = 0. (79)

Let us expand C as

C(M (2)) = g(c)M
(2)
,r2 + bM (2)

,r + cM (2), (80)

with b(r)=−2g(c)/r+M (c)/r2+L(c)g′(c) and c(r) = M
(c)
,r /

r2, or in terms of the equilibrium values of the density and
potential functions at the saddle-center

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g(c)(r) = 1 − 1
√

1 + ρ(c)
,

b(r) = −2g(c)

r
− h

(c)
,r +

ρ
(c)
,r

2(1 + ρ(c))3/2
,

c(r) = 4πρ(c).

(81)

Integrating eq. (79) by parts, and using M (2) = 0 on
the boundaries r = 0 and r = rc (see appendix A), we find
that ζ(r) must be a solution of the second order differential
equation

(g(c)ζ),r2 − (bζ),r + cζ = 0, (82)

with the initial condition ζ(0) = 0 (the radial deriva-
tive ζ,r(0) is a free parameter since the differential equa-
tion is second order). At the edge of the star we do not
have ζ(rc) = 0, see below, but rather ζ,r(rc) = 0: the
radial derivative of ζ vanishes because the second order
differential equation (83) becomes a first order one (since
g(c)(rc) = 0, see eq. (67)). This does not happen in the
case studied in [32] where the pressure-density relation
was p = ρT , that leads to similar relations as here, but
g(c)(rc) = 1. The differential equation for the unknown
function ζ(r) writes

g(c)(r)ζ,r2 + a1(r)ζ,r + a0(r)ζ = 0, (83)

where the coefficients
{

a1(r) = 2g(c)
,r − b(r),

a0(r) = c(r) + g
(c)
,r2(r) − b,r(r),

(84)
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Fig. 8. Comparison between normal form (solid blue curve)
and numerical solution (red points) for the maximum of
M (1)(r, t) versus time. In the numerical simulations of the
Euler-Poisson system we start from the critical profile Mc(r)
at t = 0 and decrease the temperature as T (t) = 1 − γ′t with
γ′ = 0.1.

may be expressed in terms of the radial density using
eqs. (67) and (81). It turns out that for r = rc we have
g(c) = a0 = 0, but a1(rc) = 0, that gives the boundary
relation ζ,r(rc) = 0.

The solution of eq. (83) with the condition ζ(0) = 0 is
shown in fig. 6, red dashed line, where ζ,r(rc) = 0. Figure 8
shows the evolution of the maximum value M

(1)
max(t) of the

profile M (1)(r, t) with time (solid line). This quantity is
proportional to the function A(t) that is the solution of
Painlevé equation (75). It is compared with the numerical
solution of the full Euler-Poisson equations (dots). We see
that the results agree for small amplitudes but that the
agreement ceases to be correct at large amplitudes where
the small amplitude approximation loses its validity. It
particular, the real amplitude increases more rapidly, and
the singularity occurs sooner, than what is predicted by
Painlevé I equation.

Remark: According to the results of sect. 2, and coming
back to the original (but still dimensionless) variables, we
find that the collapse time in the framework of Painlevé
equation is t∗ = t̂∗/(Kγ̃)1/5 with t̂∗ � 3.4, i.e.

t∗ = 0.79 . . .

∣∣∣∣
Tc

Ṫ

∣∣∣∣

1/5

. (85)

On the other hand, close to the collapse time, the ampli-
tude of the mass profile diverges as A(t) ∼ (6/K)(t∗−t)−2

i.e.
A(t) ∼ 0.487

1
(t∗ − t)2

. (86)

4.5 Discussion

This section was devoted to an explicit derivation of the
“universal” Painlevé I equation for the beginning of the
collapse following the slow crossing of the saddle-center
bifurcation for the equilibrium problem. We have chosen
to expose this detailed derivation in a simple model
of equation of state and without taking into account

exchange of energy in the fluid equations. Of course this
makes our analysis qualitatively correct (hopefully!) but
surely not quantitatively so for real supernovae, an elusive
project anyway. We have shown that Painlevé I equation
represents the normal form of the full Euler-Poisson
system until the deviations out of the solution at the
saddle-center equilibrium are too large to maintain the
validity of a perturbative approach. Our analysis explains
well that the collapse of the star can be a very fast process
following a very long evolution toward a saddle-center bi-
furcation. As we shall explain in the next section, after the
crossing of the saddle-center bifurcation, the solution of
the Euler-Poisson equations have a finite time singularity
at the center. We point out that this happens when the
radius of the star has the order of magnitude it had at the
time of the saddle-center bifurcation. Therefore the size of
the core should remain orders of magnitude smaller than
the star radius, as found for the Penston-Larson solution
which predicts a core containing a very small portion of
the total star mass. If the saddle-center bifurcation is the
key of the implosion mechanism, this result should not
depend on the equation of state. However the question
of how massive is the self-collapsing core has received
various answers. For supernovae in massive stars, starting
from the hypothesis that pressure and gravity forces
are of the same order during the collapse, Yahil [33]
considered equations of state of the form p = KρΓ

with adiabatic indices in the range 6/5 < Γ ≤ 4/3. He
found that the ratio of the mass inside the core and the
Chandrasekhar mass is almost constant, between 1.1 and
unity in this range of Γ . Moreover he found that the core
moves at less than the sound speed, that was considered
as essential for all its parts to move in unison [2]. In the
next section we show that the hypothesis that pressure
and gravity forces are of the same order is not relevant to
describe the collapse. Our derivation leads to a drastically
different velocity field, which is supersonic in the core and
subsonic outside, tending to zero at the edge of the star.

5 Finite time singularity of solutions of
Euler-Poisson equations: pre-collapse

The perturbation analysis presented so far can deal only
with perturbations of small amplitude, that is correspond-
ing to a displacement small compared to the radius of the
star. We have seen that, at least up to moderate values
of the amplitude of perturbations to the equilibrium so-
lution, the analysis derived from Painlevé equation yields
correct results, not only for the exponents, but also for
all the numerical prefactors. This defines somehow com-
pletely the starting point of the “explosion of the star”.
But there is still a long way toward the understanding of
supernovae. As a next step forward, we shall look at the
dynamics of the solution of the Euler-Poisson equations
with radial symmetry, starting with a quasi-equilibrium
numerical solution of the equations of motion. We empha-
size the importance of the initial conditions for solving the
dynamics, a delicate problem which could lead to various
solutions as discussed and illustrated in [6] for instance.
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The most noticeable feature of our numerical study is the
occurrence of a singularity at the center after a finite time.
To describe the numerical results, we must invoke a sin-
gularity of the second kind, in the sense of Zel’dovich [34].
Contrary to the singularity of the first kind where the var-
ious exponents occurring in the self-similar solution are
derived by a simple balance of all terms present in the
equations, a singularity of the second kind has to be de-
rived from relevant asymptotic matching, that may require
to neglect some terms, as described in the present section.

The occurrence of a finite time singularity in the col-
lapse of a self-gravitating sphere has long been a topic
of investigations. An early reference is the paper by Mes-
tel [35] who found the exact trajectory of a particle during
the free-fall9 of a molecular cloud (neglecting the pres-
sure forces), assuming spherically symmetry. The exact
Mestel solution displays a self-similar solution of the pres-
sureless Euler-Poisson system as shown later on by Pen-
ston [4], that leads to a finite time singularity with an
asymptotic density as ρ(r) ∼ r−α with α = 12/7, smaller
than 2 (an important remark, as will be shown in the
next subsection). Taking account of the pressure forces,
another self-similar solution was found independently by
Penston [4] and Larson [5] which is usually called the
Penston-Larson solution. It is characterized by α = 2.
This solution was proposed to describe the gravitational
collapse of an isothermal gas assuming that pressure and
gravitational forces scale the same way. This corresponds
to a self-similarity of the first kind (the exponent being
defined simply by balancing all the terms in the origi-
nal equations) by contrast to self-similarity of the second
kind, or in the sense of Zel’dovich, that we are consider-
ing below. In the Penston-Larson solution, the magnitude
of the velocity remains finite, something in contradiction
with our numerical findings. Moreover this solution has a
rather unpleasant feature, noticed by Shu [36]: it implies a
finite constant inward supersonic velocity far from the cen-
ter, although one would expect a solution tending to zero
far from the center, as observed numerically. We present
below another class of singular solution which better fits
the numerical observations than the one of Penston [4] and
Larson [5]. In the numerics we start from a physically rel-
evant situation which consists in approaching slowly the
saddle-center bifurcation in a quasi-equilibrium state. As
time approaches the collapse, we observe that the numer-
ical velocity tends to infinity in the core of the singularity
and decays to zero far from the center, in agreement with
the theoretical solution proposed, eqs. (99)-(100) below
with α larger than 2. The equations we start from are the
Euler-Poisson equations for the mass density ρ(r, t) and
radial speed u(r, t),

ρ,t +
1
r2

(
r2ρu

)
,r

= 0, (87)

ρ (u,t + uu,r) = −Tρ,r −
GM(r, t)ρ

r2
, (88)

9 By free fall, we mean a situation where the collapse is
due only to the gravitational attraction, i.e. in which pressure
forces are neglected. This corresponds to the Euler-Poisson sys-
tem (12)-(14) with p = 0.

with
M(r, t) = 4π

∫ r

0

dr′r′2ρ(r′, t). (89)

In the equations above, we consider the case of an isother-
mal equation of state, p = ρT , which amounts to consider-
ing the equation of state (27) in the limit of large density,
that is the case in the central part of the star. The temper-
ature T has the physical dimension of a square velocity, as
noticed first by Newton, and G is Newton’s constant. The
formal derivation of self-similar solutions for the above
set of equations is fairly standard. Below we focus on the
matching of the local singularity with the outside and on
its behavior at r = 0. A solution blowing-up locally can do
it only if its asymptotic behavior can be matched with a
solution behaving smoothly outside of the core. More pre-
cisely, one expects that outside of the singular domain (in
the outer part of the core) the solution continues its slow
and smooth evolution during the blow-up, characterized
in particular by the fact that the velocity should decrease
to zero at the edge of the star meanwhile the local solution
(near r = 0) evolves infinitely fast to become singular.

In summary, contrary the Penston-Larson derivation
which imposes the value α = 2 by balancing the terms in
the equations and leads to a free parameter value R(0), our
derivation starts with an unknown α value (larger than 2),
but leads to a given value of R(0). In our case the un-
known α value is found after expanding the solution in
the vicinity of the center of the star. This yields a nonlin-
ear eigenvalue problem of the second kind in the sense of
Zel’dovich [34], as was found, for instance, in the case of
the Bose-Einstein condensation [7,8] while the Penston-
Larson singular solution is of the first kind (again because
it is obtained by balancing all terms in the equations).

5.1 General form of self-similar solutions

The solution we are looking after is of the type for the
density ρ,

ρ(r, t) = (−t)βR
(
r(−t)β/α

)
, (90)

and for the radial velocity u,

u(r, t) = (−t)γU
(
r(−t)β/α

)
, (91)

where α, β and γ are real exponents to be found. The func-
tions R(·) (different from the function R(t) introduced at
the beginning of this paper. We keep this letter to remind
that it is the scaled density ρ) and U(·) are numerical
functions with values of order one when their argument
is of order one as well. They have to satisfy coupled dif-
ferential equations without small or large parameter (this
also concerns the boundary conditions). To represent a
solution blowing up at time t = 0 (this time 0 is not the
time zero where the saddle-center bifurcation takes place;
we have kept the same notation to make the mathemat-
ical expressions lighter), one expects that the density at
the core diverges. This implies β negative. Moreover this
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divergence happens in a region of radius tending to zero
at t = 0. Therefore α must be positive. Finally, at large
distances of the collapsing core the solution must become
independent on time. This implies that R(·) and U(·) must
behave with

ξ = r(−t)β/α, (92)

as power laws when ξ � 1 such that the final result ob-
tained by combining this power law behavior with the pre-
factor (−t)β for R and (−t)γ for U yields functions ρ and
u depending on r only, not on time. Therefore one must
have

R(ξ) ∼ ξ−α, (93)

and
U(ξ) ∼ ξ−γα/β . (94)

In that case,
{

ρ(r, t) ∝ r−α,

u(r, t) ∝ r−γα/β ,
(95)

for r → +∞ where the proportionality constants are in-
dependent on time.

Inserting those scaling assumptions in the dynamical
equations, one finds that eq. (87) imposes the relation

β

α
+ γ + 1 = 0. (96)

This relation is also the one that yields the same order
of magnitude to the two terms u,t and uu,r on the left-
hand side of eq. (88). If one assumes, as usually done,
that all terms on the right-hand side of eq. (88) are of
the same order of magnitude at t tending to zero, this
imposes α = −β = 2 and γ = 0. This scaling corre-
sponds to the Penston-Larson solution. However, let us
leave α free (again contrary to what is usually done where
α = 2 is selected) and consider the relative importance
of the two terms in the right-hand side of eq. (88), one
for the pressure and the other for gravity. The ratio pres-
sure to gravity is of order t2β/α−β . Therefore the pressure
becomes dominant for t tending to zero if α < 2, of the
same order as gravity if α = 2 and negligible compared
to gravity if α > 2 (in all cases for β negative). For pres-
sure dominating gravity (a case where very likely there is
no collapse because the growth of the density in the core
yields a large centrifugal force acting against the collapse
toward the center), the balance of left and right-hand sides
of eq. (88) gives γ = 0 and β = −α, while in the opposite
case, i.e. for α > 2, it gives

β = −2, (97)

and
γ = 2/α − 1. (98)

Therefore the velocity in the collapse region where r ∼
(−t)−β/α diverges only in the case of gravity dominating
pressure (α > 2).

Our numerical study shows clearly that velocity di-
verges in the collapse region. We believe that the early

numerical work by Larson [5] does not contradict our ob-
servation that α is larger than 2: looking at his fig. 1, page
276, in log scale, one sees rather clearly that the slope of
the density as a function of r in the outer part of the core
is close to (−2), but slightly smaller than (−2). The au-
thor himself writes that this curve “approaches the form
r−2” without stating that its slope is exactly (−2), and
the difference is significant, without being very large. The
slope −α = −24/11 derived below fits better the asymp-
totic behavior in fig. 1 of Larson [5] than the slope (−2)
does (the same remarks apply to fig. 1 of Penston [4]).
Therefore we look for a solution with α > 2 for which
the gravitational term dominates the pressure in eq. (88).
As shown below, the existence of a solution of the simi-
larity equations requires that α has a well-defined value,
one of the roots of a second degree polynomial, and the
constraint α > 2 allows us to have a velocity field decay-
ing to zero far from the singularity region, as observed in
our numerics, although α < 2 yields a velocity field grow-
ing to infinity far from the collapse region, something that
forbids to match the collapse solution with an outer so-
lution remaining smooth far from the collapse. The case
α = 2 imposes a finite velocity at infinity, also something
in contradiction with the numerical results.

5.2 A new self-similar solution where gravity
dominates over pressure

5.2.1 Eigenvalue problem of the second kind

In the following, we assume that gravity dominates over
pressure forces, i.e. α > 2. The set of two integro-
differential equations (87) and (88) becomes a set of cou-
pled equations for the two numerical functions R(ξ) and
U(ξ) such that

ρ(r, t) = (−t)−2R(r(−t)−2/α), (99)

and
u(r, t) = (−t)−1+ 2

α U(r(−t)−2/α), (100)

where ξ = r(−t)−2/α is the scaled radius. As explained
previously, we must have

R(ξ) ∼ ξ−α, and U(ξ) ∼ ξ−(α/2−1), (101)

for ξ → +∞ in order to have a steady profile at large
distances. The equations of conservation of mass and mo-
mentum become in scaled variables

2R +
2ξ

α
R,ξ +

2
ξ
RU + (RU),ξ = 0, (102)

(
1 − 2

α

)
U +

2
α

ξU,ξ + UU,ξ = −4πG

ξ2

∫ ξ

0

dξ′ ξ′2R(ξ′).

(103)

The integro-differential equation (103) can be transformed
into a differential equation, resulting into the following
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second order differential equation for U(·), supposing R(·)
known,

U,ξ2

(
U+

2
α

ξ

)
+U,ξ

[
1+

4
α

+
2
ξ
U+U,ξ

]
− 2γ

ξ
U+4πGR=0.

(104)
From now on, we use the dimensionless variables defined
in sect. 3.3. Concerning the initial conditions (namely the
conditions at ξ = 0), they are derived from the possible
Taylor expansion of U and R near ξ = 0, like

R = R0 + R2ξ
2 + R4ξ

4 + . . . (105)

and
U = U1ξ + U3ξ

3 + U5ξ
5 + . . . . (106)

Putting those expansions in eqs. (102) and (103), one finds
U1 = −2/3 and R0 = 1/(6π). Note that R = R0 and
U = ξU1 is an exact solution of eqs. (102) and (103), that
is not the usual case for such Taylor expansions. This cor-
responds to the well-known free-fall solution of a homo-
geneous sphere [4]. It follows from this peculiarity that,
at next order, we obtain a linear homogeneous algebraic
relation because the zero value of R2 and U3 must be a
solution. Inserting the above values of R0 and U1 at this
order, we obtain the homogeneous relations

3 − α

3α
R2 +

5
24π

U3 = 0, (107)

and
4πR2 + 5

12 − 5α

3α
U3 = 0. (108)

This has a non-trivial solution (defined up to a global mul-
tiplying factor —see below for an explanation) if the de-
terminant of the matrix of the coefficients is zero, namely
if α is a root of the second degree polynomial

7
3
α2 − 18α + 24 = 0. (109)

This shows that α cannot be left free and has to have
a well-defined value. However, it may happen that none
of these two values of α is acceptable for the solution
R(ξ), U(ξ) we are looking for, so that we should take
R2 = U3 = 0 and pursue the expansion at next order. This
is the case for our problem because one root of eq. (109) is
α = 12/7 which does not belong to the domain α > 2 we
are considering (because we assume that the gravity effects
are stronger than the pressure effects)10, and the other
10 We note that the exponent α = 12/7 was previously found
by Penston [4] for the free fall of a pressureless gas (T = 0) by
assuming a regular Taylor expansion ρ = ρ0 + ρ2r

2 + . . . close
to the origin. This solution is valid if T is exactly zero but,
when T > 0, as it is in reality, this solution cannot describe a
situation where gravity dominates over pressure (the situation
that we are considering) since α = 12/7 < 2. This is why
Penston [4] and Larson [5] considered a self-similar solution
of the isothermal Euler-Poisson system (87)-(89) where both
pressure and gravity terms scale the same way. Alternatively,
by assuming a more general expansion ρ = ρ0 +ρkrk + . . . with
k > 2 close to the origin, we find a new self-similar solution
where gravity dominates over pressure.

solution α = 6 is excluded by the argument in sect. 5.2.2
below.

Therefore we have to choose R2 = U3 = 0 and consider
the next order terms of the expansion, which also provides
a homogeneous linear system for the two unknown coeffi-
cients R4 and U5. It is

4
3 − α

3α
R4 +

7
12π

U5 = 0, (110)

and
4πR4 + 7

8 − 3α

α
U5 = 0, (111)

which has non-trivial solutions if α is a root of the secular
equation

11
4

α2 − 17α + 24 = 0, (112)

whose solutions are α = 4 or α = 24/11. The value α = 4
is excluded by the argument in sect. 5.2.2 whereas the
solution

α =
24
11

(113)

could be the relevant one for our problem. In that case,
we get β = −2 and γ = −1/12. The density decreases at
large distances as r−24/11 and the velocity as r−1/11 (while
in the Penston-Larson solution, the density decreases at
large distances as r−2 and the velocity tends to a constant
value). Of course, we can carry this analysis by beginning
the expansion with an arbitrary power k bigger than 2
like R = R0 + Rkξk + . . . and U = U1ξ + Ukξk+1 + . . .
with arbitrary k (actually, k must be even for reasons of
regularity of the solution). In that case, we find the two
exponents

α(k) =
6k

2k + 3
(114)

and α = 3k/(k−1). We note that the first exponent varies
between 0 (homogeneous sphere) and 3, while the second
exponent is larger than 3 for k > 1 which is unphysical by
the argument in sect. 5.2.2.

In the case considered above, we note that the ex-
ponent α(4) = 24/11 is close to 2 so that it is not in
contradiction with previous numerical simulations ana-
lyzed in terms of the Penston-Larson solution (which has
α = 2). Moreover there is obviously a freedom in the solu-
tion because, even with α root of the secular equation,
R4 and U5 are determined up to a multiplicative con-
stant. This is the consequence of a property of symme-
try of eqs. (102) and (103): if (R(ξ), U(ξ)) is a solution,
then (R(ξ/λ), λ−1U(ξ/λ)) is also a solution with λ an ar-
bitrary positive number. This freedom translates into the
fact that U5 and R4 are defined up to a multiplication by
the same arbitrary (positive) constant. If U5 and R4 are
multiplied by λ, the next order coefficients of the Taylor
expansion, like U9 and R8 (U7 and R6 being set to zero)
should be multiplied by λ2, and more generally the coef-
ficients U4n+1 and R4n, n integer, by λ2n, the coefficients
U2n and R2n+1 being all zero.

The behavior of U(ξ) and R(ξ) at ξ → ∞ was derived
in eq. (101). As one can see, the power law behavior for R
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Fig. 9. Density of the self-similar problem obtained by solving
eqs. (115)-(116) with α = 24/11. (a) R(ξ); (b) ρ(r, t) versus
r at times −1,−0.1,−0.05,−0.01,−0.001. The initial condi-
tions are R(yi) = R0 + R4 exp(4yi), V (yi) = U1 + U5 exp(4yi),
V,y(yi) = U1 + 4U5 exp(4yi) at yi = −10, with R0 = 1

6π
,

U1 = − 2
3
, R4 = − 7(8−3α)

4πα
U5 and U5 = 102.

at ξ infinity follows from the assumption that terms linear
with respect to R in eq. (102) become dominant at large
ξ. Keeping the terms linear with respect to U in eq. (103)
and canceling them yields U(ξ) ∼ ξ1−α/2. This shows that
both the perturbation to u and ρ described by the self-
similar solution have first a constant amplitude far from
the core (defined as the range of radii r ∼ (−t)2/α) and
then an amplitude tending to zero as the distance to the
core increases, which justifies that the linear part of the
original equation has been kept to derive this asymptotic
behavior of the similarity solution. As already said, this
large distance behavior of the self-similar solution makes
possible the matching of this collapsing solution with an
outer solution behaving smoothly with respect to time.

The numerical solution of eqs. (102)-(103) was actually
obtained by using the system (115)-(116) for the coupled
variables R, V = U/ξ, then changing the variable ξ into
y = ln(ξ). It writes

2R +
2
α

R,y + 3RV + (RV ),y = 0, (115)

and
A,y(V ) + 3A(V ) + 4πR(y) = 0, (116)

where A(V ) = V + 2
αV,y + V 2 + V V,y. The self-similar

solutions R(ξ) and −U(ξ) are drawn in log scale in figs. 9
and 10 respectively together with the corresponding time
dependent density and velocity ρ(r, t) and −u(r, t). In ap-
pendix B, by proceeding differently, we obtain the self-
similar solution of the free-fall analytically, in parametric

(a) −10 −5 5 10
ln (   )ξ
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ln (−U)

(b) 10 -4 0.001 0.01 0.1 1
r

10 -4
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Fig. 10. Velocity of the self-similar problem, obtained by solv-
ing eqs. (115)-(116) with α = 24/11. (a) −U(ξ), (b) −u(r, t)
versus r at same times and with same initial conditions as in
fig. 9.

form. As shown later, the analytical solution is equivalent
to the numerical solution of eqs. (115)-(116), see fig. 18.

5.2.2 An upper bound for α

We have seen that α must be larger than 2. It is interesting
to look at a possible upper bound. Such a bound can be
derived as follows. At the end of the collapse, the density
and radial velocity follow simple power laws near r = 0,
derived from the asymptotics of the self-similar solution.
As said below, at the end of the collapse one has precisely
ρ(r) ∼ r−α. Therefore, from elementary estimates, the
total mass converges if α is less than 3, which gives an
upper bound for α. In summary, the exponent α has to be
in the range

2 < α < 3, (117)

in order for a physically self-similar solution to fulfill the
condition that gravity is dominant over pressure.

5.2.3 Homologous solution for general polytropic equations
of state

The self-similar solution that we have found is indepen-
dent on the pressure term in the original equation for mo-
mentum. Therefore, it is natural to ask the question of its
dependence on the equation of state (namely the pressure-
density relation). Because the density diverges at r = 0 in
the similarity solution, it is reasonable to expect that, if
the pressure grows too much at large densities, it will be-
come impossible to neglect the pressure term compared to
gravity. Let us consider a pressure depending on ρ with
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a power law of the form p = KρΓ with Γ ≡ 1 + 1/n
a real exponent and K a positive constant. We know al-
ready that, if Γ = 1, the pressure term can be neglected
in the collapsing core, and the collapsing solution is char-
acterized by the exponent α = 24/11. The same system of
equations (102)-(103) for the self-similar solution will be
found whenever the pressure can be neglected. Therefore
we expect that the above solution is valid, with the same
α, as long as the power Γ in the pressure-density relation
leads to negligible pressure effects in the collapsing region.
Putting the power law estimate derived from the similar-
ity solution without pressure, one finds that the marginal
exponent Γ is Γc = 2−2/α which for α = 24/11 is equal to

Γc =
13
12

, (nc = 12). (118)

For Γ > Γc, the pressure becomes formally dominant com-
pared to gravity in the collapse domain (still assuming
α = 24/11), although if Γ is less than Γc the pressure is
negligible compared to gravity in the same collapse do-
main. When the pressure is dominant, either there is no
collapse because the outward force it generates cannot
physically produce an inward collapse, or other scaling
laws with a different α yield a collapsing solution differ-
ent from the one that we have derived (see below). If Γ is
less than Γc = 13/12 the collapse is driven by dominant
gravity forces and the scaling laws derived above apply
and are independent on the value of Γ . This occurs be-
cause the values of the exponents α = 24/11, β = −2, and
γ = −1/12 were deduced from the Euler-Poisson equa-
tions after canceling the pressure term in the right-hand
side of eq. (88).

Let us be more general and consider other possible
values of α.

If we assume that pressure and gravity forces are of
the same order, the exponents are

α =
2

2 − Γ
, β = −2, γ = 1 − Γ. (119)

The condition α < 3 (see sect. 5.2.2) implies that Γ < 4/3.
It is well-known that a polytropic star with index Γ > 4/3
is dynamically stable, so there is no collapse. The critical
index Γ = 4/3 corresponds to ultra-relativistic fermion
stars such as white dwarfs and neutron stars. In that case,
the system collapses and forms a core of mass of the order
of the Chandrasekhar mass as studied by Goldreich and
Weber [37]. The collapse of polytropic spheres with 6/5 ≤
Γ ≤ 4/3 described by Euler-Poisson equations has been
studied by Yahil [33]. For Γ < 4/3, the star collapses in
a finite time but since α < 3 the mass at r = 0 at the
collapse time t = 0 is zero (in other words, the density
profile is integrable at r = 0 and there is no Dirac peak).

We can also consider the case where gravity forces
overcome pressure forces so that the system experiences a
free fall. If we compare the magnitude of the pressure and
gravity terms in the Euler-Poisson system when the ho-
mologous solutions (90)-(91) are introduced, we find that
the pressure is negligible if α > 2/(2 − Γ ). Therefore, for

a given polytropic index Γ , the pressureless homologous
solutions are characterized by the exponents

2
2 − Γ

< α ≤ 3, (120)

and
β = −2, γ = 2/α − 1. (121)

The collapse exponent α is selected by considering the
behavior of the solution close to the center. Setting R(ξ) =
R0 + Rkξk and U(ξ) = U1 + Uk+1ξ

k+1, the relation (114)
between α and k leads to the following choice: α will be
the smallest value of α(k) satisfying both relations (120)
and (114) for k even. If follows that

α =
12
7

for Γ ≤ 5
6

, (122)

which is the exponent derived by Penston [4] for zero pres-
sure or T = 0 assuming k = 2. Next, we find

α =
24
11

, for
5
6

< Γ ≤ 13
12

, (123)

as obtained above assuming k = 4. Finally, we find that

α =
6k

2k + 3
, for

4k − 3
3k

< Γ ≤ 4k + 5
3k + 6

, (124)

for any k ≥ 4 even. We note that there is no solution for
Γ ≥ 4/3 since the polytropic stars with such indices are
stable as recalled above.

Finally, when pressure forces dominate gravity forces,
the scaling exponents are obtained by introducing the self-
similar form (90)-(91) into the Euler-Poisson system with-
out gravity forces, yielding

β = − 2
2/α + Γ − 1

, γ = − Γ − 1
2/α + Γ − 1

. (125)

However, this situation is not of physical relevance to our
problem since it describes a slow “evaporation” of the sys-
tem instead of a collapse.

5.3 Comparison of the self-similar solution with the
numerical results

5.3.1 Invariant profiles and scaling laws

The numerical solutions of the full Euler-Poisson sys-
tem were obtained using a variant of the CentPack soft-
ware [31] by Balbas and Tadmor. Comparing our theoret-
ical predictions of the self-similar solution just before col-
lapse with the numerical solution of the full Euler-Poisson
system, we find that both lead to the same result, namely
they give a value of the exponent α slightly larger than
two. The numerical solutions of ρ(r, t) and u(r, t) versus
the radial variable r at different times before the collapse
are shown in figs. 11 and 12, respectively.
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Fig. 11. Density ρ(r, t) versus the radial variable r in log10

scale: numerical solutions of the full Euler-Poisson system,
eqs. (87)-(88) at different times before the collapse. The solid
line with slope −24/11 fits better the asymptotic behavior
(large r) of the curves than the dotted-dashed line with slope
−2.
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Fig. 12. Velocity −u(r, t) versus the radial variable r: numer-
ical solutions of the full Euler-Poisson system, eqs. (87)-(88)
at different times before the collapse (the inward velocity (−u)
increases with time).

To draw the self-similar curves, we may get around
the difficult task of the exact determination of the col-
lapse time by proceeding as follows. We define a core ra-
dius r0(t) such that ρ(0, t)r0(t)α = 1 (or any constant
value), then we draw ρ(r, t)/ρ(0, t) and u(r, t)/u(r0, t) ver-
sus r/r0(t). The merging of the successive curves should
be a signature of the self-similar behavior. The result is
shown in figs. 13 and 14 for the density and velocity re-
spectively. The log scale of the density curve illustrates the
expected asymptotic behavior (large ξ values) R ∼ ξ−α

or ρ(r, t)/ρ(0, t) ∼ (r/r0(t))−α. The asymptotic behav-
ior of the velocity, U ∼ ξ1−α/2 is less clear in fig. 14
where the curves display an oscillating behavior below
the line with slope 1 − α/2. We attribute the progres-
sive decrease of the curves below the expected asymptote
to the shock wave clearly visible in the outer part of the
velocity curves (in addition, as discussed by Larson [5]
p. 294, the velocity profile approaches the self-similar so-
lution much slower than the density). In figs. 13 and 14
the black curves display the theoretical self-similar solu-
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Fig. 13. Self-similar density curves ρ(r, t)/ρ(0, t) versus
r/r0(t) in log scale with r0(t) defined in the text and α =
24/11.
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Fig. 14. Velocity ratio −u(r, t)/u0(t) versus r/r0(t) in log
scale deduced from the curves of fig. 12 with the definition of
r0(t) given in the text and α = 24/11. A shock wave is visible
at the edge of the star, see the oscillations of the velocity.

tion shown in figs. 9(a) and 10(a), which has analytical
parametric expression given in appendix B.1.

In fig. 13 the merging density curves have all the same
ordinate at the origin, since we have plotted ρ(r, t)/ρ(0, t).
To complete the comparison between the theory and the
simulation for the self-similar stage, we have also drawn
the series of self-similar density curves R(ξ) in order to
check whether the central behavior of the numerical curves
agrees with the expected value R(0) = 1/(6π). To do this
we have first to define the collapse time t∗ as precisely
as possible, then to plot the quantity (t∗ − t)2ρ(r, t) ver-
sus r/(t∗ − t)2/α. These curves are shown in fig. 15. They
clearly merge except in a close domain around the center.
We observe that the numerical value at ξ = 0 is noticeably
larger than the expected value R(0) = 1/(6π) � 0.05 (it
is also substantially larger than the value 0.133 . . . corre-
sponding to the Penston-Larson solution). This shows that
the system has not entered yet deep into the self-similar
regime. Therefore, our numerical results should be consid-
ered with this limitation in mind. However, a precise study
displays a clear decrease of the value of (t∗−t)2ρ(0, t) dur-
ing the approach to collapse, as illustrated in fig. 16, which
shows a good trend of the evolution (see below).
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Fig. 15. Numerical self-similar density curves ρ(r, t)(−t)2 ver-
sus ξ = r(−t)−2/α for α = 24/11.
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Fig. 16. Behavior of the density at the center of the star. We

plot ρ
−1/2
c versus t to show a quasi-linear time dependence of

the numerical solution in the Painlevé and in the pre-collapse
regimes. The green dots are the numerical results, the blue
dotted-dashed curve is the Painlevé solution, the red curve the
self-similar one which includes an additional second order term,
see text.

In fig. 16 we compare the numerics with the theory,
both in the Painlevé regime described in sect. 4 and in the
self-similar regime described here. In these two regimes,
the central density is expected to behave as (t∗− t)−2, see
eqs. (11) and (99) for the Painlevé and the homologous
regime respectively. Therefore we draw [ρ(0, t)]−1/2 which
should decrease linearly with time (with different slopes).
The green dots result from the numerical integration of
the full Euler-Poisson equations at constant temperature
(actually similar results are obtained with a temperature
decreasing with time), with initial condition at temper-
ature T = 0.9Tc (out of equilibrium). At the beginning
of the integration, in the Painlevé regime, the density
ρc(t) = ρ(0, t) is expected to evolves as ρc(0) + ρ1A(t),
where A(t) is the solution of the modified version of
eq. (75), valid for constant temperature, which writes

Ä =
(

1 − T

Tc

)
γ + KA2, (126)

with γ = 120.2, and K = 12.32, as in sect. 4. The dotted-
dashed blue line displays the function ρp(t)−1/2 with

ρp(t) = 36A(t) + 26.85, where the coefficients are fitted
to the numerical Euler-Poisson solution, and the initial
conditions for the Painlevé equation are A(0) = Ȧ(0) = 0.

Close to the collapse time (t∗ = 0.55 in the numer-
ics), the numerical solution ρ(0, t) is expected to behave
as 1

6π (t∗ − t)−2, up to an additional second order term.
A term of order (t∗ − t)−4/3 was chosen because it is the
perturbation associated to the eigenvalue λ = −2/3 of the
linear analysis around the fixed point C = [R0 = 1/(6π);
U1 = −2/3]11 and fits well the numerical results. The
red curve displays the function ρf (t)−1/2 with ρf (t) =
1
6π (t∗ − t)−2 + 6.5(t∗ − t)−4/3, which agrees well with the
numerical dots, indicating that the Euler-Poisson solution
tends to converge towards the self-similar form close to
the center, whereas with some delay. In the following sub-
section we show that the fixed point C is a saddle point,
with one stable direction but another unstable. It follows
that the numerical solution has a priori no reason to reach
C. However we observe that it clearly tends towards this
fixed point as the collapse is approached.

5.3.2 Dynamical behavior close to the center

Recall that we have derived the theoretical value of the
exponent α = 24/11 by expanding the density as R(ξ) =
R0 + R4ξ

4 + . . . close to ξ = 0, with R0 = 1/(6π) and
U = U1ξ + U5ξ

5 + . . . with U1 = −2/3 (R4 and U5 being
defined up to a multiplicative coefficient). In order to ex-
plain the discrepancy between the numerics and the theo-
retical value R(0) = 1/(6π), we look at the stability of the
self-similar solution close to ξ = 0. Let us assume here that
R and U are functions of ξ and time, with ξ = r(−t)−2/α

and define the time dependent variable [38,39]

s = − ln (−t). (127)

We set
ρ(r, t) = (−t)−2R(ξ, s), (128)

and
u(r, t) = (−t)−1+ 2

α U(ξ, s), (129)

where the variable s is positive for small t, increasing up to
infinity as collapse is approached. Substituting this ansatz
in eqs. (87)-(88) which include the terms due to pressure
and gravity, yields the dynamical equations for R and U

R,s + R,ξ

(
U +

2
α

ξ

)
+ RU,ξ +

2
ξ
R(U + ξ) = 0, (130)

and

U,s + U,ξ

(
U +

2
α

ξ

)
− γU + T

R,ξ

R
e2γs

+
4π

ξ2

∫ ξ

0

dξ′ξ′
2
R(ξ′, s) = 0, (131)

where γ is negative, see eq. (98).
11 See the next subsection where the change of variable in
eq. (127) is a trick converting a problem with algebraic decay
into exponential decay permitting spectral analysis.
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These two coupled equations generalize the self-similar
study of Larson [5], Penston [4] and Brenner-Witelski [6]
to the case of an exponent α different from 2. Besides the
fact that in eqs. (130)-(131) the α-dependent coefficients
are slightly different from theirs, the main difference with
previous works is that here the prefactor e2γs of the pres-
sure term decreases as s increases (as the collapse is ap-
proached), while this factor was unity in their case.

The self-similar functions U and R can be expanded
as R(ξ, s) = R0(s) + R2(s)ξ2 + R4(s)ξ4 + . . . and U =
U1(s)ξ + U3(s)ξ3 + . . . close to ξ = 0. Writing Ri(s) =
Ri + ri(s) and Ui(s) = U i + ui(s), for i = 0, 1, 2 . . . one
gets the asymptotic relations R0 = 1/(6π) and U1 = −2/3
at lowest order, which is strictly the steady-state values
found above in the equations without pressure, because
asymptotically the pressure term vanishes. However these
asymptotic values are not stable, as we shall prove now.

Because we are interested in what happens just before
the collapse time, we can neglect the pressure term in
eq. (131). It becomes

U,s + U,ξ

(
U +

2
α

ξ

)
− γU +

4π

ξ2

∫ ξ

0

dξ′ξ′
2
R(ξ′, s) = 0.

(132)
The autonomous system (130) and (132) has the useful
property to reduce itself to a closed set of ODEs for R0(s)
and U1(s). This set reads

U1,s + U1

(
U1 +

2
α

)
+

(
1 − 2

α

)
U1 +

4π

3
R0 = 0, (133)

and
R0,s + 3R0U1 + 2R0 = 0. (134)

This system has three fixed points (namely solutions inde-
pendent on s): i) the point C = [R0 = 1/(6π);U1 = −2/3]
defined in the previous subsection (the values at ξ = 0
of R and U , solution of the similarity equations already
derived); ii) also [R0 = U1 = 0]; iii) and finally [R0 =
0;U1 = −1].

Writing R = R0 + δreλs, and U = ξ(U1 + δueλs), the
linear stability analysis of eqs. (133)-(134) in the vicinity
of the fixed point [R0, U1] gives the eigenvalues equation

λ2 +(5U1 +3)λ+(2U1 +1)(3U1 +2)− 4πR0 = 0. (135)

It follows that the fixed point C has one unstable and one
stable direction in the phase plane, with eigenvalues +1
and −2/3, independently of the α value.

The fixed point R0 = 0 and U1 = −1 has two unsta-
ble directions with a degenerate eigenvalue +1, although
R0 = U1 = 0 is stable in all directions, with eigenvalues
−1 and −2. The consequences for the whole solution are
not completely clear. This could explain why in the nu-
merical work it seems so hard to get the right value of
R0. This could be either because the initial condition for
this set of ODEs does not allow to reach the fixed point
U1 = −2/3 and R0 = 1/(6π) or because the numerics
does not have the accuracy necessary to reach in loga-
rithmic times the fixed point. Moreover, this fixed point,

because it is stable in only one direction and unstable in
the other, is reached from special initial conditions, on
its stable manifold. Otherwise the solution are attracted
either to infinity or to R0 = U1 = 0, depending on the
initial condition.

5.3.3 Near the stable fixed point

Assuming that the solution approaches the stable fixed
point R0 = U1 = 0, one may write R(s, ξ) = δr(s, ξ)
and U(s, ξ) = ξδu(s, ξ), where δr and δu are smaller
than unity. Setting x = − ln(ξ), the functions δr(s, x) and
δu(s, x) are solutions of a linear autonomous system de-
rived from eqs. (130) and (132). We obtain

δr,s(s, x) − 2
α

δr,x(s, x) + 2δr(s, x) = 0, (136)

and

δu,s(s, x) + δu(s, x) +
4π

3
δr(s, x) = 0, (137)

where both variables s and x are positive and go to infinity
as the collapse is approached.

The solution of the linear homogeneous equation (136)
is

δr(s, x) = e−2sr̃

(
2
α

s + x

)
, (138)

where r̃ = δr(s, 0) is the profile of the density at the initial
time t0 of the collapse regime, with s = − ln(t0 − t∗) by
definition. It follows that the solution of the linear equa-
tion (136) decreases exponentially to zero as the collapse
is approached.

6 Beyond the singularity: post-collapse

The question of the post-collapse was considered by
Yahil [33] in his study of Euler-Poisson equations with a
polytropic equation of state p = KρΓ with 6/5 ≤ Γ ≤ 4/3.
For the critical index Γ = 4/3, corresponding to ultra-
relativistic neutron stars, during the homologous collapse
all the mass in the core contracts towards the center, such
that at the singularity time there is a non-zero mass, of
the order of the Chandrasekhar mass, at r = 0 [37]. In
that case, the post-collapse regime begins with a non-zero
mass at r = 0, represented in the equations by a Dirac
peak at r = 0. This is not what happens for polytropic
equations of state with Γ < 4/3 when pressure and grav-
ity are of the same order [4,5,33], or in our description of
the self-similar collapse where gravity overcomes pressure
forces (free fall), because, at the singularity time t = 0, as
we have seen, the density does not write as a Dirac dis-
tribution but as a power law ρ(r, 0) ∝ r−α which yields
for α < 3 a mass converging at r = 0 (the large distance
behavior is to be matched with an outer solution to make
the total mass finite). Because we do not expect a Dirac
peak of finite mass at r = 0 at the time of the singu-
larity, our post-collapse situation looks (mathematically)
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like the one of the dynamics of the Bose-Einstein conden-
sation where the mass of the condensate begins to grow
from zero after the time of the singularity [7,8]12.

Let us derive the equations for the self-similar dynam-
ics after the collapse. As in the case of the post-collapse
dynamics of self-gravitating Brownian particles [40] and
of the Bose-Einstein condensation [7,8], we have to add
to the equations of density and momentum conservation
an equation for the mass at the center. Let Mc(t) be this
mass. It is such that Mc(0) = 0. We need an equation for
its growth. The mass flux across a sphere of radius r is
J = 4πr2ρ(r)u(r). Therefore the equation for Mc(t) is

Mc,t =
[
−4πr2ρ(r)u(r)

]
r→0

. (139)

To have a non-zero limit of [−4πr2ρ(r)u(r)] as r tends to
zero constrains the behavior of u(r) and ρ(r) near r = 0.
The velocity near r = 0 is a free-fall velocity. At r very
small, it is completely dominated by the attraction of the
mass at r = 0. Therefore it can be estimated by taking
the relation of energy conservation in free-fall, with a zero
total energy, because at such short distances the initial
velocity is negligible compared to the velocity of free-fall.
This yields u ≈ −(2Mc/r)1/2, which shall define the limit
behavior of u(r, t) near r = 0. Because r2ρ(r)u(r) must
tend to a finite value at r = 0, one must have ρ(r) ∼ r−3/2.
Note that this gives an infinite density at r = 0 for t > 0
while ρ(0) was finite before the collapse time; but close to
r = 0 the density ρ(r) decreases (versus r) less rapidly for
positive t than it did for negative t.

The equations one has to solve now are the same as
before plus the attraction by the mass Mc(t) at r = 0 in-
cluded (the pressure being again considered as negligible,
which is to be checked at the end),

ρ,t +
1
r2

(
r2ρu

)
,r

= 0, (140)

u,t + uu,r = −GM(r, t)
r2

, (141)

and

M(r, t) = 4π
∫ r

0

dr′r′2ρ(r′, t) + Mc(t). (142)

The equation (139) for Mc(t) with the initial condition
Mc(0) = 0 has to be added to the set of equations of mo-
tion. The scaling laws of this system are derived as was
done for the self-similar dynamics before the singularity.
Because the equations after singularity include the whole
set of equations leading to the singularity, the scaling laws
are the same as before, with a free exponent like the one
denoted as α (this assuming, as we shall check it, that
the scaling laws have as much freedom as they had before
collapse, which is not necessarily true because one has an-
other eq. (139) for another unknown function, Mc(t)). But

12 Some analogies between the post-collapse dynamics of self-
gravitating Brownian particles [40] and the Bose-Einstein con-
densation have been discussed in [8].

the free exponent has to be the same as before collapse be-
cause the asymptotic behavior of the solution remains the
same before and after collapse: at very short times after
collapse only the solution very close to r = 0 is changed by
the occurrence of a finite mass at r = 0, a mass which is
very small at short positive time. Therefore we look for a
self-similar solution of the equations above with the same
scaling laws as before collapse for ρ(r, t) and u(r, t) plus
another scaling for Mc(t)

ρ(r, t) = t−2R+(rt−2/α), (143)

u(r, t) = t−1+ 2
α U+(rt−2/α), (144)

and
Mc(t) = KM tb, (145)

where α = 24/11 and b is a positive exponent to be found.
Moreover there has been a change of sign from (−t)

to t in the scaled functions, which is obviously due to
the fact that we are looking for positive times after the
singularity, this one taking place at t = 0. To have the
two terms on the right-hand side of eq. (142) of the same
order of magnitude with respect to t imposes

b =
6
α
− 2, (146)

a positive exponent as it should be (recall the condition
that α is less than 3). For α = 24/11, we get b = 3/4. This
yields the following set of definitions of the self-similar
unknowns after collapse

ρ(r, t) = t−2R+(ξ+), (147)

u(r, t) = t2/α−1U+(ξ+), (148)

and
Mc(t) = KM t6/α−2. (149)

The stretched radius is ξ+ = rt−2/α. The equations to be
satisfied by the scaled functions are

−2R+ − 2ξ+

α
R+,ξ+ +

2
ξ+

R+U+ + (R+U+),ξ+ = 0, (150)

and
(

1 − 2
α

)
U+ +

2
α

ξ+U+,ξ+ − U+U+,ξ+ =

G

ξ2
+

(

4π

∫ ξ+

0

dξ′+ξ′
2
+R+(ξ′+) + KM

)

. (151)

The coefficient KM in eq. (151) is related to the limit
values of R+ and U+ near ξ+ = 0. The solution of the two
equations near ξ+ = 0 are

R+ ≈ KRξ
−3/2
+ , (152)

and
U+ ≈ KUξ

−1/2
+ . (153)
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Fig. 17. Self-similar density R+(ξ+) and velocity U+(ξ+) in
the post-collapse regime, solution of eqs. (156), in ln scale, to
be compared with solutions in the pre-collapse regime drawn
in figs. 9-10 also in ln scale.

Equation (150) does not constrain the coefficients K’s. By
setting to zero the coefficient of the leading order term, of
order ξ

−5/2
+ near ξ+ = 0, in eq. (151) yields a relationship

between the K’s

KU = −(2GKM )1/2. (154)

Another relation comes from eq. (139). It yields

KM = − 2π

3/α − 1
KUKR. (155)

Therefore there is only one free parameter among the three
coefficients K’s. This free parameter is fixed by the match-
ing with the large distance behavior of R+ and U+, which
is defined itself by the matching with the outside of the
collapse domain.

The system (150)-(151) was solved numerically (see
fig. 17) by using the coupled variables R, V = U/ξ and
y = ln(ξ) (dropping the + indices) as in sect. 5.2, that
gives the coupled equations analogous to eqs. (115)-(116),

⎧
⎨

⎩
−2R − 2

α
R,y + 3RV + (RV ),y = 0,

A,y(V ) + 3A(V ) − 4πR(y) = 0,
(156)

with A(V ) = V + 2
αV,y − V 2 − V V,y, which are free of

the inner core mass term. In appendix B, by proceeding
differently, we obtain an analytical solution of the post-
collapse dynamics which agrees with the numerical solu-
tion of eqs. (156), see fig. 19 for comparison.

7 Conclusion and perspectives

This contribution introduced a theory of the early stage
of supernova explosion which assumes that this belongs
to the wide class of saddle-center bifurcations with a slow
sweeping of the parameters across the bifurcation range.
This explains well the suddenness of the explosion occur-
ring after aeons of slow evolution. The hugely different
time scales combine into a single intermediate time scale
for the slow-to-fast transition which could be of the order

of several hours. This transition is described by a “univer-
sal” dynamical equation, the Painlevé I equation. Com-
paring this prediction with a model of star presenting a
saddle-center bifurcation shows a quantitative agreement
with the predictions based on general arguments of bifur-
cation theory.

This shows at least one thing, namely that the collapse
of the star by the loss of equilibrium between pressure
and gravitational forces is a global phenomenon depend-
ing on the full structure of the star and cannot be as-
cribed, for instance, to an instability of the core reaching
the Landau-Chandrasekhar limit mass, as often assumed.
We also looked at the evolution of the star following the
onset of instability, namely when the amplitude of the per-
turbations grows to finite values and cannot be described
by Painlevé I equation anymore. In our equation of state
model, the pressure becomes proportional to the density
in the large density limit. The pressure increase is likely
less steep than what is expected for the inner core of stars,
even though there are big uncertainties on the interior of
stars, particularly the ones yielding supernovae: showing
no early warning of the incoming explosion they are not
scrutinized spectroscopically. Nevertheless, an analysis of
this situation teaches us a few interesting lessons. First,
we do not consider self-similar (or homologous) collapse
in the usual sense (where pressure and gravity scale the
same way) because our numerical results and our analy-
sis lead us to claim that the pressure becomes negligible
in the core. Secondly, we find a new self-similar free-fall
solution toward the center.

Our numerical results together with physical consider-
ations about the velocity field make us argue that besides
the mathematically correct Penston-Larson solution, our
new self-similar (free-fall) solution is relevant to describe
the collapse. In other words, writing self-similar equations
is not enough to guaranty their relevance for a given prob-
lem because there can be more than one such kind of so-
lution, like in the present case, where Zel’dovich type 2
solution corresponds to the numerical results, although a
type 1 solution also exists, but is not relevant.

The numerical results presented here were obtained
by starting from the equilibrium state of the star at the
saddle-center, then decreasing slowly the temperature.
However we notice that the same conclusions are obtained
when starting slightly away from the saddle-center point
and performing the numerical integration at constant tem-
perature. We point out that the previous numerical stud-
ies of gravitational collapse by Penston [4], Larson [5] and
later by others [6] were performed starting from a uniform
density initial state (and finite radius), that represents
initial conditions which are very far from ours and from
any physical situation; nevertheless these authors did find
a density behaving asymptotically (at large distance) as
r−α, with α larger than 2, as we find here.

The free-fall solution we found is not the free-fall so-
lution studied for many years, because the exponents of
our self-similar solution are not the ones usually found.
This conclusion is based upon a detailed comparison be-
tween the direct numerical solution of the evolution equa-
tions and the solution of the simpler equations for the



Page 24 of 27 Eur. Phys. J. E (2014) 37: 26

self-similar problem. As far as we are aware, although the
self-similar paradigm is often invoked in this field, such a
detailed comparison between dynamical solutions of the
full Euler-Poisson system and the full self-similar solu-
tion has not yet been done (the merging of the curves
before the collapse time was not shown). We show that
it is a relatively non-trivial endeavor to perform such a
comparison. Moreover we point out that our self-similar
pressure-free solution is more tricky to derive than the
standard Penston-Larson homologous solution including
the pressure for which standard scaling laws (Zel’dovich
first kind) can be derived formally without any difficulty.
Finally we have mentioned that the center is a saddle point
for our self-similar solution. Numerically this property is
manifested in the behavior towards r = 0 of the density
profile ρ(r, t) − ρ(0, t) which should pass from r2 to r4 in
the self-similar regime (for generic initial conditions). The
mechanism of this change of exponent, if it really occurs,
has not been clearly identified and requires a deeper study.

This work leaves open many questions. One central
issue is how the scenario we outlined, namely slow start-
ing in the universality class Painlevé I, and later finite
time collapse toward the central core, is dependent on the
pressure/density relation. We suspect that, if the pres-
sure increases more rapidly with the density than linearly
at large densities, there will be no finite time singularity.
Likely, because shock waves will form, irreversible trans-
formations will take place in those shock waves and an-
other equation of state will become relevant for the star.

We greatly acknowledge the “Fondation des Treilles” where
this work was initiated, and Paul Clavin for many very stimu-
lating discussions.

Appendix A. Boundary conditions to derive
the normal form

Let us derive the boundary conditions to solve the inte-
gral equation (79) by transforming it into the differential
equation (82). We have to cancel the terms

[
g(c)ζM (2)

,r

]rc

0
,

[
(g(c)ζ),rM

(2)
]rc

0
, and

[
bζM (2)

]rc

0
.

i) At rc we have g(c)(rc) = 0 and M (2)(rc) = 0 that
ensure the cancelation of the terms g(c)ζM

(2)
,r , g(c)ζ,rM

(2),
bζM (2), and g

(c)
,r ζM (2) at r = rc (while g

(c)
,r and ζ are both

non-zero at r = rc, see fig. 6). This suppresses all the terms
taken at r = rc.

ii) At r = 0 we impose ζ = 0 that cancels the
terms g(c)ζM

(2)
,r , g

(c)
,r ζM (2), and bζM (2). The last term

g(c)ζ,rM
(2) vanishes under the condition M (2)(0) = 0 (be-

cause g(c) and ζ,r are both non-zero at r = 0). This sup-
presses all the terms taken at r = 0.

Appendix B. Analytical self-similar solutions
for the free fall

Penston [4] has given an exact solution of the free-fall
problem without thermodynamic pressure (p = 0). It
could seem that, because of the absence of thermodynamic
pressure, this is irrelevant for the problem of singularity
in the evolution of the collapsing core of models of stars.
However, this is not quite true because we have shown
that during the collapse this thermodynamic pressure be-
comes negligible, and so the evolution of the system is
essentially like a free-fall. By analyzing the equations for
this pressureless collapse we have shown that, actually, a
discrete set of solutions exists, with different singularity
exponents. The free-fall solution found by Penston corre-
sponds to the exponent α = 12/7. Since this exponent is
smaller than 2 pressure effects become important at a cer-
tain point of the evolution (Penston obtains the estimate
δt/tf ∼ 10−4) and this is why he considers in a second step
the case where pressure and gravity forces are of the same
order leading to another self-similar solution (the Penston-
Larson solution) with α = 2. Actually, we propose another
possibility which is in agreement with our numerical re-
sults (and actually with many others). We show below that
other exponents than 12/7 are possible for the free-fall,
some of them being larger than 2 and providing therefore
a possible solution of the initial problem in which gravity
always dominates over pressure forces13. Our solutions are
based on the choice of initial conditions for the radial de-
pendence of the density ρ(a) = ρ0(1 − ak/Ak), where a is
the radial variable (same notations as in Penston [4]). The
exponent k is left free, although Penston takes k = 2 with
the comment: “we are ‘almost always’ correct in taking
the form ρ(a) = ρ0(1 − a2/A2)”.

We consider a sphere of gas initially at rest and call
M(a, 0) the mass of gas contained within the sphere of
radius a and ρ(a) = 3M(a, 0)/4πa3 the average density of
that sphere. Using Gauss theorem, the Euler equation (13)
with the pressure neglected is equivalent to

d2r

dt2
=

du

dt
= −GM(a, 0)

r2
, (B.1)

where r and u are the position and the velocity at time t
of a fluid particle located at r = a at t = 0. This equation

13 It does not mean that the Penston-Larson solution is incor-
rect. It represents a mathematically exact (type I) self-similar
solution of the isothermal Euler-Poisson equations. However,
we argue that other (type II) self-similar solutions exist in
which gravity overcomes pressure. They are characterized by
α > 2 and by a density behaving as ρ0 + ρkrk with k > 3 close
to the origin (see below), while the Penston-Larson solution
has α = 2 and the density behaves as ρ0 + ρ2r

2 close to the
origin. Our numerical work (despite its limitations because we
follow the collapse only over a few decades in density) together
with important physical considerations (e.g. the fact that the
velocity profile in our solution decreases to zero instead of tend-
ing to a constant value) suggest that these new solutions are
relevant to describe the collapse.
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can be solved analytically [35] and the solution can be
expressed in parametric form as

r = a cos2 θ, (B.2)

t =
(

3
8πGρ(a)

)1/2 (
θ +

1
2

sin(2θ)
)

, (B.3)

where θ runs between 0 and π/2. Taking θ = π/2, we
find that a particle initially at r = a arrives at r = 0
at a time t(a) = (3π/32Gρ(a))1/2. Setting a = 0+ in the
foregoing expression, we find that the first particle reaches
the center at the time

tf =
(

3π

32Gρ0

)1/2

, (B.4)

where ρ0 = ρ(0). This is called the free-fall time. At t = tf ,
the central density becomes infinite (ρc = +∞).

Using the equation of motion (B.2)-(B.3) giving r =
r(a) and the relation ρ(r, t)r2 dr = ρ(a, 0)a2 da, which is
equivalent to the equation of continuity (12), we can de-
termine the evolution of the density profile ρ(r, t) and of
the velocity profile u(r, t) in the pre- and post-collapse
regimes. For t → tf and r not too large, they have a self-
similar form. The derivation of this self-similar solution
follows rather closely the one by Penston with the only
difference that his assumption ρ(a) = ρ0(1− a2/A2) is re-
placed by ρ(a) = ρ0(1 − ak/Ak). Therefore, we skip the
details of the derivation and directly give the final results.

Appendix B.1. The pre-collapse regime

In the pre-collapse regime (t < tf ), the self-similar density
and velocity profiles are given in parametric form by

ρ(r, t)
ρc(t)

=
3

3 + 2(3 + k)y + (3 + 2k)y2
, (B.5)

r

r0(t)
= y1/k(1 + y)2/3 , (B.6)

u(r, t)
u0(t)

= − y1/k

(1 + y)1/3
, (B.7)

where y = 1
2 ( a

A )k tf

δt goes from 0 to +∞ (here δt = tf − t).
For k = 4, the curves ρ(r, t)/ρc(t) and −u(r, t)/u0(t)
drawn in fig. 18, solid lines, coincide with the self-similar
numerical solution (dashed line) of eqs. (102)-(103) de-
rived in sect. 5.2.

In the above parametric representation the central
density is given by the relation

ρc(t) =
(

4
3π

)2

ρ0

(
tf

tf − t

)2

. (B.8)

Using eq. (B.4) it can be rewritten as

ρc(t) =
1

6πG

1
(tf − t)2

, (B.9)
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Fig. 18. Parametric solutions (B.5)-(B.7) compared with the
self-similar solutions of sect. 5.2 for α = 24/11. (a) Density
ρ(r, t)/ρc(t) versus r/r0(t) for k = 4 in solid line, R(ξ)/R(0)
versus ξ = r/r0(t) for R4 = −4 in dashed line. (b) Velocity
u(r, t)/u0(t) versus r/r0(t) in solid line; −1.6U(ξ) in dashed
line.

which agrees with the result of sect. 5.2. Moreover, we
have

r0(t) =
(

3π

4

)2/3

21/kA

∣
∣∣∣
tf − t

tf

∣
∣∣∣

(2k+3)/3k

, (B.10)

u0(t) =
π

2(k−1)/k

(
4
3π

)1/3
A

tf

∣∣∣∣
tf − t

tf

∣∣∣∣

(3−k)/3k

. (B.11)

For r → 0, we get

ρ(r, t) ∼ ρc(t)

[

1 − 2
3
(3 + k)

(
r

r0(t)

)k
]

, (B.12)

u(r, t) ∼ −u0(t)
r

r0(t)
. (B.13)

For r → +∞, we get

ρ(r) ∼ ρ0
3

2k + 3

(
8
3π

Ak

)6/(2k+3) 1
r6k/(3+2k)

, (B.14)

u(r) ∼ −
(

8πρ0G

3

)1/2 (
8
3π

Ak

)3/(2k+3)

r(3−k)/(3+2k),

(B.15)

which are independent on time as it should. We have ρ ∼
r−αk and u ∼ rνk with

αk =
6k

2k + 3
, νk =

3 − k

2k + 3
. (B.16)

The expressions (B.14) and (B.15) also give the density
and velocity profiles for all r at t = tf . For k = 2, we get
α2 = 12/7 and ν2 = 1/7; for k → +∞, we get α∞ = 3 and
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ν∞ = −1/2; for k = 4, we get α4 = 24/11 and ν4 = −1/11.
The exponent α achieves the critical value 2 for k = 3.
For k < 3, i.e. α < 2, the pressure wins over gravity as we
approach the collapse time tf , and the free-fall solution
is not valid anymore. For k > 3, i.e. α > 2, the gravity
always wins over pressure so the free-fall solution may be
valid for all times.

Let us discuss the form of the density and velocity
profiles depending on k.

For any k, the density profile ρ(r, t) starts from a fi-
nite value (for t < tf ) and decreases with the distance r.
The central density ρc(t) increases with time and diverges
at the collapse time tf . At t = tf , the density profile is
singular at the origin.

For k < 3, i.e. α < 2, the velocity profile −u(r, t)
starts from zero at r = 0 and increases with the distance
r. The magnitude of the velocity u0(t) decreases with time
and tends to zero at the collapse time tf . At t = tf , the
velocity is still zero at the origin.

For k = 3, i.e. α = 2, the velocity profile −u(r, t) starts
from zero at r = 0 (for t < tf ), increases with the distance
r, and reaches an asymptotic value u0 (the prefactor u0(t)
is constant). At t = tf , the velocity profile has a constant
non-zero value u0.

For k > 3, i.e. α > 2, the velocity profile −u(r, t)
starts from zero at r = 0 (for t < tf ), increases with the
distance r, reaches a maximum, and decreases towards
zero at large distances. The prefactor u0(t) increases with
time and diverges at the collapse time tf . At t = tf , the
velocity profile is singular at the origin.

Appendix B.2. The post-collapse regime

In the post-collapse regime (t > tf ), the self-similar den-
sity and velocity profiles are given in parametric form by

ρ(r, t)
ρc(t)

=
3

3 + 2(3 + k)y + (3 + 2k)y2
, (B.17)

r

r0(t)
= |y|1/k|1 + y|2/3, (B.18)

u(r, t)
u0(t)

= − |y|1/k

|1 + y|1/3
, (B.19)

where y goes from −∞ to −1, and ρc(t), r0(t) and u0(t) are
defined by eqs. (B.8)-(B.11) as in the pre-collapse regime.
For r → +∞, the behavior is the same as in the pre-
collapse regime, but for t > tf and r → 0, we get

ρ(r, t) ∼ ρc(t)
3
2k

(
r0(t)

r

)3/2

, (B.20)

u(r, t) ∼ −u0(t)
(

r0(t)
r

)1/2

. (B.21)

We note that the density and the velocity are always sin-
gular at r = 0. For any k, the density profile ρ(r, t) is
decreasing, as illustrated in fig. 19(a). For k < 3, the ve-
locity profile −u(r, t) decreases, reaches a minimum value,

(a) 0 1 2 3 4 5
r /r00
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3

4

5
ρ/ρc

(b) 0 1 2 3 4 5
r r00
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4

5

-u/u0

/

Fig. 19. Parametric solutions (B.17)-(B.19) and self-similar
solutions of eqs. (156) in the post-collapse regime. (a) Density
ρ(r, t)/ρc(t) versus r/r0(t) for k = 4, or α = 24/11, in solid
line, 15R(ξ) versus ξ = r/r0(t) for KU = −1 in dashed line,
(b) velocity −u(r, t)/u0(t) versus r/r0(t) in solid line, −U(ξ)
in dashed line.

and increases. For k = 3 it decreases towards an asymp-
totic value u0 and for k > 3 it decreases towards zero, see
fig. 19(b).

Finally, the mass contained in the Dirac peak
ρD(r, t) = MD(t)δ(r) at time t > tf is

MD(t) =
8π

3
2(3−k)/kρ0A

3

(
t − tf

tf

)3/k

. (B.22)

The mass in the core grows algebraically with an exponent
bk = 3/k. For k = 2, we get b2 = 3/2; for k → +∞, we
get b∞ = 0; for k = 3, we get b3 = 1; for k = 4, we get
b4 = 3/4.

Appendix B.3. The homogeneous sphere

Finally, for completeness, we recall the solution corre-
sponding to the collapse of a homogeneous sphere with
mass M , initial density ρ0 and initial radius R0. Since
ρ(a) = ρ0, we find from eqs. (B.2)-(B.4) that all the par-
ticles collapse at r = 0 at the same time tf . Therefore,
a Dirac peak ρD(r) = Mδ(r) is formed at t = tf . The
evolution of the radius R(t) of the homogeneous sphere is
given by

R(t) = R0 cos2 θ,
t

tf
=

2
π

(
θ +

1
2

sin(2θ)
)

, (B.23)
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where θ runs between 0 and π/2. For t → tf , we get

R(t) = R0

(
3π

4

)2/3 (
1 − t

tf

)2/3

. (B.24)

The density ρc(t) = 3M/4πR(t)3 increases as

ρc(t) = ρ0

(
4
3π

)2 (
1 − t

tf

)−2

. (B.25)

The velocity field is u(r, t) = −H(t)r with

H = − Ṙ

R
=

2
3
(tf − t)−1. (B.26)
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