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Abstract. The majority of eukaryotic DNA, about three quarter, is wrapped around histone proteins form-
ing so-called nucleosomes. To study nucleosomal DNA we introduce a coarse-grained molecular dynamics
model based on sequence-dependent harmonic rigid base pair step parameters of DNA and nucleosomal
binding sites. Mixed parametrization based on all-atom molecular dynamics and crystallographic data of
protein-DNA structures is used for the base pair step parameters. The binding site parameters are adjusted
by experimental B-factor values of the nucleosome crystal structure. The model is then used to determine
the energy cost for placing a twist defect into the nucleosomal DNA which allows us to use Kramers theory
to calculate nucleosome sliding caused by such defects. It is shown that the twist defect scenario together
with the sequence-dependent elasticity of DNA can explain the slow time scales observed for nucleosome
mobility along DNA. With this method we also show how the twist defect mechanism leads to a higher
mobility of DNA in the presence of sin mutations near the dyad axis. Finally, by performing simulations on
5s rDNA, 601, and telomeric base pair sequences, it is demonstrated that the current model is a powerful
tool to predict nucleosome positioning.

1 Introduction

The DNA of eukaryotic cells has typically macroscopic
lengths but needs to fit inside micron-sized cell nuclei. To
achieve this, eukaryotic DNA is hierarchically folded with
the help of proteins into the chromatin complex [1]. On
the first level, DNA is wrapped around millions of protein
cylinders resulting in a string of so-called nucleosomes.
The core of each nucleosome is a cylinder composed of
an octamer of histone proteins and it is wrapped by a
147 base pairs (bp) long DNA stretch. The complexes are
connected via short stretches of unbound DNA, the linker
DNA. According to the nucleosome crystal structure [2],
DNA is bound to the octamer at 14 binding sites where
the minor groove of the DNA double helix faces the cylin-
der defining a left-handed superhelical wrapping path of
one and three quarter turns. The higher-order structures
beyond the nucleosome are still highly debated [3] and are
not discussed here any further.

The tight wrapping of nucleosomal DNA around the
histone octamers raises the question of how other DNA
binding proteins can bind to their target base pair se-
quences. If such a sequence happens to be located inside
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a wrapped portion, steric exclusion would hinder its ac-
cess. As it turns out, however, spontaneous fluctuations
of the nucleosomes provide transient access. There are at
least two mechanisms: nucleosome breathing or site expo-
sure [4–13], where the DNA partially unwraps from the
protein core, and nucleosome sliding [14–19] where the
protein cylinder moves as a whole along the DNA. Nucle-
osome breathing occurs spontaneously from either end of
the wrapped DNA portion as the result of the sequential
opening of binding sites. Experimentalists detect nucleo-
some breathing either by measuring protein accessibility
to nucleosomes [4–8] or by employing fluorescence reso-
nance energy transfer between dyes strategically placed
on the nucleosomal DNA and/or histones [9–12].

Nucleosome sliding results from defects that are spon-
taneously formed on the nucleosome. Experimental evi-
dence [18,19] points toward small 1 bp twist defects where
an extra or a missing bp is located between two neighbor-
ing binding sites [20–22]. Such a defect can be accom-
modated inside the nucleosome by the over- or under-
stretching and over- or under-twisting of the correspond-
ing DNA section. Twist defects are produced at either end
of the wrapped portion. If such a defect manages to diffuse
through the nucleosome and to fall off at the other end,
it causes a 1 bp step of the nucleosome along the DNA.
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The cost of a twist defect had been estimated to be about
9kBT [20], where T denotes the absolute temperature and
kB the Boltzmann constant. This means that defects are
rare and especially the occurrence (and interaction) of
more than one defect on a nucleosome is of no practical
interest. By assuming 14 identical binding sites offering
13 identical defect locations, it was concluded in ref. [20]
that only in one of 14 cases a twist defect manages to cross
through a nucleosome and hence to cause a sliding event.

Earlier models of the nucleosome (like in refs. [20, 23–
26]) assumed the DNA molecule to be mechanically ho-
mogeneous along its contour. Newer models also account
for bp-step specific mechanical properties that have a pro-
nounced effect on the DNA bending energetics as DNA is
severely bent in the complex. Morozov et al. [27] include
in their model sequence-specific DNA mechanics but ac-
count for the histone-DNA interaction only through a very
simplified potential. That potential is at a minimum when
the DNA forms an ideal superhelix with a radius and pitch
inferred from the crystal structure [2] and varies quadrat-
ically with the deviation from that ideal geometry. The
model allows to predict the positioning of nucleosomes
on various sequences. On the other hand, the model of
Becker and Everaers [28] starts from nucleosome crystal
structures and infers from the DNA conformation forces
and torques that act on the molecule. This DNA nanome-
chanics approach detects not only the strong impact of the
binding sites on DNA deformations but also a smaller one
that stems from the histone tails. It successfully predicts
the sequence specific locations of twist defects in the crys-
tal structures. Whereas both approaches [27, 28] account
for the DNA mechanics in a similar way, their modeling of
the DNA-histone interaction are completely different. The
former approach is completely unspecific in just building
in a potential to bend the DNA into an ideal superhelix
whereas the latter approach forces the DNA into the very
specific conformation found in the crystal structure.

In this paper we introduce a model that attempts to
come to a more physical description of the energetics of
the DNA binding sites. A schematic representation of the
model is depicted in fig. 1. The details of the model are
explained in the following section. Our model constrains
the DNA more than in ref. [27] but less than in ref. [28].
Giving a more realistic representation of the DNA-histone
interaction allows us to study a wider range of phenomena
observed for nucleosomes, e.g. thermal fluctuations inside
the crystal and nucleosome sliding through twist defects.
In sect. 3 we present the results of various simulations that
we performed with our model. After tuning the model
such that it reproduces the experimental values of the
B-factors for the backbone phosphates, we measure the
total energy of the system with twist defects at different
positions and compare our findings with the preferred lo-
cations of twist defects in two crystallographic structures.
As the next step nucleosome sliding is investigated based
on twist defect diffusion. We then show how sin mutations
near the dyad axis have a strong impact on nucleosome
sliding by altering the dynamics of the twist defect diffu-
sion. Finally, the effects of sequence-dependent elasticity

Fig. 1. (Color online) Schematic representation of the model.
Main figure: Every base is shown with a different color. Blue
ellipsoids represent A-T and green ellipsoids represent G-C
base pairs. The example shown here corresponds to the palin-
dromic DNA sequence of NCP147. Red spheres are s1 springs.
s2 springs are not shown to avoid complexity. Inset: two ad-
jacent base pairs and the location of binding sites. The red
points represent the binding site fixed in space and the green
point represents the location of the phosphate halfway between
two base pairs. The direction of the red arrow that connects s1
to s2, was determined from a simulation where the s2 springs
were absent (see text for details).

of DNA on nucleosome positioning and sliding is studied
for the 5S rDNA, the 601, and four telomeric sequences.

2 Model

2.1 Interaction potential between base pairs

We consider a system of successive rigid objects where
each object represents a base pair. Each base pair interacts
with its adjacent neighbors via a harmonic potential

U =
1
2
(ψ − ψ0)T · K · (ψ − ψ0), (1)

where ψ is a vector with 6 components, specifying rela-
tive orientation and separation of the adjacent base pairs.
The rotational (Twist, Tilt, and Roll) and translational
(Shift, Slide and Rise) parameters are defined at a refer-
ence midframe via CEHS representation [29]. ψ0 repre-
sents the equilibrium configuration of base pairs and K
is a 6 × 6 stiffness matrix. Both are sequence-dependent.
Having 4 different bases results in 16 different possible
combinations for two successive base pairs which are re-
duced to 10 after considering the symmetries.
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There are different methods to obtain 10 possible
sets of ψ0 and K. Olson et al. [30] report the parame-
ters by analyzing the crystal structures of naked B-DNA
and protein-DNA configurations. In a different approach,
Lankas et al. [31] used all-atom molecular dynamics simu-
lations to find parameters for the harmonic potential be-
tween base pairs (see ref. [32] for a more recent molec-
ular dynamics parametrization). Becker et al. [33] com-
bine both methods and define a mixed parametrization
method. They show that by using stiffness matrices from
all-atom molecular dynamics [31] and equilibrium parame-
ters from protein-DNA crystals [30], a more precise poten-
tial for DNA modeling is achieved (MP parametrization).
In the current study we use the MP parametrization for
the interaction of the base pairs.

2.2 Interaction at binding sites

The interaction between the histone octamer and the DNA
is only considered at the 14 groups of binding sites. To
mimic the configuration at the binding sites in the crystal
structure, every binding site in our model consists of 3
phosphate groups of DNA connected to the octamer. We
model these bonds as harmonic springs

Ubind =
1
2
kbind(Δr)2 − Ebind. (2)

There are five unknown parameters to be determined per
bond: the stiffness of the spring, kbind, the depth of the
binding energy, Ebind, and three for the coordinates of
the site. To find the locations of the binding sites we use
the crystal structure of NCP147 [34]. This structure is
perfect (no twist defects in the structure) and contains a
palindromic sequence of DNA. We find bonded phosphate
groups from the local minima of the B-factor curve of the
phosphorous atoms in both DNA strands and obtain their
coordinates from the pdb file as well. The B-factor of an
atom is a measure of the fluctuations of its position. Phos-
phates bound to the protein core are expected to show less
fluctuations and can thus be identified by a smaller value
of the B-factor (its precise definition is given later be-
low). These points are shown schematically in fig. 1 by s1.
The nucleosomal DNA in our model must be connected
to these points. Since the rigid bp model does not contain
anything except the bp’s themselves, we need to define the
locations of our virtual phosphates. As a good approxima-
tion to the geometry of real DNA double helices, we place
the actual locations of the phosphates in a given confor-
mation at the midpoint of a line which connects the ends
of two adjacent base pairs as shown in fig. 1 (green sphere
m1). We denote the coordinate of the center of mass of
the i-th ellipsoid by x̂i and its orientation with respect to
a reference frame by its local frame {d̂i

1, d̂
i
2, d̂

i
3}, where d̂3

is normal to the bp plane and d̂2 points along the major
axis of the ellipsoids. Then the position vector x̂m1 of m1
in the reference frame is obtained as

x̂m1 =
1
2

(
x̂i + x̂i+1 +

w

2
(d̂i

2 + d̂i+1
2 )

)
, (3)

where the indexes i and i + 1 correspond to the bp’s in-
volved in a binding site and w ≈ 18 Å is the bp width.
According to this definition, Δr can be written as Δr =
|x̂m1 − x̂s1| with x̂s1 as the position vector of point s1 in
the reference frame.

According to the equipartition theorem, the stiffness
of each binding site follows from the fluctuations at that
point

kbind =
3BfkBT

8π2
, with Bf =

8
3
π2〈(Δr)2〉, (4)

where Bf is the crystallographic B-factor and T is the tem-
perature of the crystal structure, here 103K. This gives us
a hint of the order of magnitude for the spring constant
but further adjustments were needed (see below). Within
the accuracy of the crystal structure data the binding sites
reflect the two-fold symmetry of the core particle very
closely. In our model we impose perfect symmetry by aver-
aging the coordinates and stiffnesses of the corresponding
binding sites.

The structure obtained in this way has still some de-
grees of freedom showing fluctuations that are too large
compared to the experiment, especially a sideway rolling
motion of the DNA. In reality, hydrogen bonds between
the phosphates and the proteins control the direction of
the bonded groups. We need therefore an extra constraint
at every binding site. In fig. 1, s1 shows the location of
the phosphorous atom obtained from the symmetrized
NCP147 structure. To restrict the direction of the bp’s
at the binding sites, we add for each binding site another
spring at position s2. This extra spring acts on the point
m2 between two bp’s involved in a binding site. The coor-
dinates of point m2 can be found in a similar way as m1 via
eq. (4) by using (w−ds) instead of w with ds = |x̂s2−x̂s1|.
These two springs must be located in a reference direction
(x̂s2 − x̂s1). To find this direction, we first simulate the
system without the extra springs. The average direction
of the d̂2 axes of two bp’s at that site is chosen to be the
reference direction. The stiffnesses of both springs are set
equal and the distance ds between them is kept as a free
parameter. This free parameter is found through fitting to
the B-factor curve of the NCP147 as explained in the next
section. The parameters obtained from this procedure are
then used for different DNA sequences.

The only parameters that are left to be determined
are the depths of the binding sites, Ebind. In most of our
simulations bonded bp’s are not allowed to detach; the
values of Ebind are then not important. Only in sect. 3.3
these values are needed to estimate the energy landscape
felt by a twist defect that moves around the nucleosome. In
that section we explain how we extracted the values of the
binding energies of the 14 binding sites from experiments.

2.3 Coarse-grain molecular dynamics simulations

All of our simulations are done by considering rigid-body
dynamics for the base pairs and integrating the equations
of motion using a symplectic algorithm [35]. It is assumed
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Fig. 2. (Color online) Comparison of the B-factor curves be-
tween the experiment [2] and the present model.

that the mass of each base pair is distributed uniformly
in a geometry given in [36] to find the corresponding mo-
ment of inertia. Forces are calculated directly from the
partial derivatives of the interaction potential. For torque
calculation we use a numerical method based on virtual
work exerting small virtual rotations about three mutual
axes on every bp at each time step (see appendix A for
more details). Simulations are performed in a canonical
ensemble with the Nose-Hoover Chain thermostat. For ev-
ery simulation run the system is given enough time for
equilibration. Our coarse-grained model allows us to in-
crease the time steps in our simulations up to about 10 fs
which is bigger than its value in ordinary all-atom MD.
This together with the radical reduction in the number
of degrees of freedom in the rigid base pair model leads
to a very efficient simulation of nucleosomal DNA. For in-
stance, a 1 ns simulation for 147 bp nucleosomal DNA on a
2.4GHz CPU takes about 2 hours. The presented data in
this study are obtained from several MD simulations with
total simulation time of about 2.5 microseconds. Due to
the complexity and the size of the nucleosome structure
this required simulation time is hardly achievable with all-
atom molecular dynamics simulations. For example, 240
cores benchmarked in an all-atom nucleosome model con-
sisting of 158000 atoms at between 8-24 ns/day [37].

3 Results and discussion

3.1 B-factor

For the first simulation we tried to reproduce the B-factor
curve of the phosphates for the NCP147 structure. A NVT
simulation at 103K was performed and after equilibration
of the system samples were taken from the location of the
m1-points (fig. 1) of the model to calculate the B-factor
for both strands of DNA. After doing some adjustments
on the stiffness of the springs and location of the second
spring we were able to reproduce the B-factor curve with
a reasonable accuracy as it is shown in fig. 2. The obtained
distance between two springs at each site was chosen to
be 3 Å everywhere.
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Fig. 3. (Color online) Total elastic energy of the system
for twist defect located on different superhelical locations for
NCP146, NCP146b, and for a homogenous DNA chain.

3.2 Preferred location of twist defect

We used our model to study the energy differences of the
system when a twist defect is located on different super-
helical locations (SHL’s), for two different sequences, the
NCP146 and the NCP146b structure. The twist defect in
NCP146 is located between SHL+0.5 and SHL+2.5 and in
NCP146b located between SHL+3.5 and SHL+5.5 [28,34].
The effect of histone tails is absent in our model and it
might affect the location of the twist defects but it has
been shown that even without considering this effect, rigid
base pair models are able to predict twist defect location
in crystal structures [28]. Figure 3 shows the results of
our simulations for these sequences. Every point of these
curves belongs to a separate simulation with a missing
base pair at the corresponding SHL. After removing a base
pair, the system is relaxed at the crystal temperature and
the time-averaged potential energy of the system is mea-
sured. For NCP146 the energy curve shows an absolute
minimum at the 2nd SHL corresponding to the experi-
mental location. For NCP146b the curve also shows an
absolute minimum at the 2nd SHL; in addition a local
minimum appears at 5th SHL. So the preferred locations
of the twist defects correspond to minima (in one case only
a local one) of the elastic energy of our model.

The same calculations were performed for homoge-
neous DNA where its parameters were obtained by av-
eraging over the equilibrium values and stiffness matrices
of all possible bp steps, see fig. 3. Remarkably all three
curves show more or less the same trends. This finding
suggests that the locations and stiffnesses of the binding
sites play a more important role than the DNA sequence
itself in determining the preferred twist defect location.
We make use of this finding in the next section where
we study twist defect diffusion using homogenous DNA
instead of performing a huge number of simulations for
every nucleosome position of a given bp sequence.

We can measure the absolute cost of twist defects at
different SHL’s by comparing the energies of the nucleo-
some with twist to that of a perfect 147 bp complex. To
account for the fact that the latter structure contains one
bp more, we multiply the potential energy of the perfect
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147 bp model by a factor of 146/147. From this we find
on average a 4.5kBT cost for placing a twist defect into
a nucleosome. Remarkably, this number is substantially
cheaper than what was estimated before [20,28]. Thus ac-
cording to our model twist defects occur more likely. As we
have a more accurate description of the microscopic struc-
ture of the nucleosome, we believe that this smaller value
might be closer to the real value. As we shall see later,
other effects, unaccounted for in ref. [20], compensate for
this discrepancy such that our new prediction of nucleo-
some repositioning finds numbers for the overall dynamics
similar to the former reference. The by far most important
new effect comes from the fact that binding sites have dif-
ferent strengths as explained in the next section.

3.3 Twist defect diffusion

As mentioned in the introduction, nucleosome sliding is
very likely caused by the diffusion of twist defects around
the histone octamer [20,21]. A twist defect enters sponta-
neously from either end of the wrapped DNA portion. The
twist defect can then diffuse inside the nucleosome. The
defect moves when a thermal fluctuation causes the open-
ing of a binding site next to the defect, smearing it out
over two adjacent SHL’s. This transition state is unstable
and the DNA forms again a new bond to the octamer. If
this bond is created in a way to localize the twist defect
at the next SHL, the defect has moved by one step corre-
sponding to 10 bp. To find the energy landscape that the
defect experiences as it moves through the nucleosome,
we need to determine the energies of a nucleosome with a
defect at every SHL and every transient state in between.
For twist defects at different SHL’s we just need to re-
peat what we have done in the previous section, but now
at room temperature. However, for the transition states
we need to know the values of the binding energies. In a
recent experiment, Hall et al. [38] unzipped DNA into a
nucleosome and measured dwell times, showing that the
strength of different binding sites is not the same. This re-
sult can be used to estimate the strength of every binding
site. If we suppose that the binding energy of each site has
an exponential relation with its corresponding dwell time
and tdwell = CeEbind/kBT with C being a proportionality
constant, then we have

Ei
bind = kBT (log ti1 + log ti2 − 2 log C), (5)

where Ei
bind is the binding energy at the i-th binding site,

ti1 and ti2 are the dwell times for the two peaks that were
observed for each binding site in the experiment.

In the following C is chosen such that the overall bind-
ing energy agrees with the value determined from an ex-
periment where nucleosomes were unwrapped by an exter-
nal force [39]. A theoretical study [26] based on that exper-
iment allows to estimate the average energy for breaking
each binding site

Eaverage = (f0 + f1)d +
1
14

Eel. (6)

Table 1. Estimated energy of each binding site.

Binding site SHL Energy (kBT )
6.5 9.2

5.5 11.2

4.5 12.8

3.5 9.2

2.5 10.1

1.5 14.4

0.5 16.2

Here f0 is the smaller force needed for the unwrapping
of the first turn, f1 is the extra force for the unwrapping
of the last turn (reflecting the electrostatic repulsion be-
tween the two DNA turns), d is the average length of DNA
between binding sites, about 3.4 nm, and Eel is the total
elastic energy of the DNA bent around the nucleosome. By
minimizing the energy of the system we find Eel ≈ 70kBT
for homogeneous DNA. This value is much smaller than
elastic energies reported in the previous pdb based model
of ref. [28] where the DNA conformation was forced to
be close to that of the crystal structures. Putting this to-
gether with f0 = 0.7kBT/nm and f1 = 1.4kBT/nm [26]
we obtain Eaverage ≈ 12kBT . Using eq. (5) with C chosen
such that the average binding energy amounts to 12kBT
leads to the values shown in table 1. Note that for the out-
most binding sites no peaks in the dwell time could be ob-
served, reflecting the weakness of those sites. We assume
here that their energies are equal to the one of the sec-
ond weakest position that is at SHL3.5. We checked that
as long as the outer binding sites are weak, the results
presented in this paper do not depend on that particular
choice.

With these numbers at hand we determine now the
height of barriers felt by a diffusing twist defect. The en-
ergy cost for bond breaking is given in table 1 and the gain
in elastic energy by stretching the defect over two neigh-
boring locations is obtained by a simulation where the cor-
responding binding site is turned off. Figure 4 shows the
energy landscape that the twist defect feels while it goes
through the nucleosomal DNA. In this plot every point
is a separate simulation of the system at room tempera-
ture to determine the time-averaged potential energy. In-
teger numbers correspond to cases where the twist defect
is localized at the corresponding SHL and half-integers de-
scribe the transition states. The change in energy at these
transition states is the sum of the energy cost for breaking
the corresponding binding site (taken from table 1) and
the gain in the elastic energy of the DNA.

Kramers’ rate theory predicts that the rate with which
a twist defect enters the nucleosome is given by

kenter = ν0 e
−Ub
kBT , (7)

where ν0 is the attempt frequency and Ub is the barrier
height that the twist defect encounters when entering the
nucleosome. The attempt frequency can be roughly esti-
mated by realizing that a stretch of about 10 bp length
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Fig. 4. Energy landscape for a twist defect moving through
a nucleosome. At the third position the probabilities for the
twist defect to go to the right, p, and to the left, q, are in-
dicated together with ΔU , the energy difference between the
barriers. Sin-mutations are accounted for by weakening the
middle binding sites by an amount ΔUsin.

needs to make a fraction of corkscrew motion when the
defect goes over a barrier. Considering that stretch as
a cylinder, the rotational friction constant is given by
ζeff = (2π/10 bp)4πηR2L, where L = 10bp ≈ 34 Å,
R ≈ w/2 ≈ 9 Å, η = 10−3 Pa s (the viscosity of water)
and (2π/10 bp) corresponds to translating 10 bp to a full
turn, 2π. With this we estimate the attempt frequency
to be 1.6 × 1010 s−1 [20]. Inserting into eq. (7) the height
of the initial barrier in the energy landscape of fig. 4, we
obtain kenter = 1.2 × 106 s−1.

Only those twist defects that pass through all of the
barriers lead to nucleosome repositioning but not those
that fall off at the same side where they have been cre-
ated. We calculate now that crossing probability for twist
defects. At each location a twist defect has different rates
for going forward or backward. Suppose at a given location
there is an energy difference ΔU between the correspond-
ing transition states (see fig. 4). As a result the escape
rate to the right, r, and to the left, s, are not equal but
obey s = re−ΔU/kBT . Therefore the probabilities of the
twist defect to go to the right, p, and to the left, q, are
given by

p =
r

r + s
and q =

s

r + s
. (8)

Finding the probabilities for all 13 sites and considering
both ends as absorbing boundaries we can construct the
transition matrix for a twist defect which enters from SHL-
7 and exits from SHL+7 as

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · · · · · · 0
q−6 0 p−6 · · · · · 0
0 q−5 0 p−5 · · 0

· · · · · · · · · · ·
0 · · · · · q+6 0 p+6

0 · · · · · · · · 0 1

⎞
⎟⎟⎟⎟⎟⎠

(9)

where the pi’s and qi’s are the probabilities for the twist
defect at the i-th SHL to go to the right and to the left.

Table 2. Probabilities for the twist defect to go to the right
for each SHL.

p−6 p−5 p−4 p−3 p−2 p−1 p0

0.076 0.320 0.707 0.837 0.062 0.007 0.5

These values are given in table 2 for the first 7 locations.
All the other values can be found by the symmetry (qi =
p−i and pi = 1 − qi).

By removing the columns and rows that correspond to
the absorbing boundaries, we obtain a 13 × 13 submatrix
T . The fundamental matrix of this transition is Q = (I −
T )−1 and the probability p∗ for a twist defect to go from
the SHL-7 to the SHL+7 is given by (QR)1,2 where R is a
13× 2 submatrix of the transition matrix with R1,1 = q−6

and R13,2 = p+6 and other components equal to zero.
This calculation leads to p∗ ≈ 1/9000. Using this prob-

ability and accounting for the fact that there are two types
of twist defects (extra or missing base pair) entering the
nucleosome from two sides, we find the diffusion coefficient
for the sliding of the nucleosome along the DNA

D = 2kenterp
∗ ≈ 240 bp2/s. (10)

This value is much higher than the experimental value
where repositioning is observed on the time scale of an
hour. However, so far we have not considered the effect of
the DNA sequence on repositioning rates. Remarkably, a
number of the same order of magnitude, D ≈ 580 bp2/s,
has been found in in ref. [20] (also there before account-
ing for the bp sequence effect). Even though the cost for
twist defects had been estimated to be much more expen-
sive, the crossing probability was much higher (as equally
strong binding sites were assumed), overall compensating
the differences. Before we consider sequence effects, we
discuss first how the transition probability for twist de-
fect can be affected by mutations.

3.4 Effect of sin mutations on the probability of twist
defect transfer

It has been shown that some mutations in the his-
tone proteins, called sin-mutations, enhance the mobil-
ity of nucleosomes along DNA [40]. One group of sin-
mutations occurs near the dyad axis affecting binding
sites at SHL±0.5. This effect makes nucleosome sliding
about 4 times faster [40]. In our model we account for sin-
mutations by weakening these binding sites by an amount
ΔUsin (see fig. 4). We then repeat our calculations for
the twist defect passage probability with the new values
for the binding energies of the most inner binding sites.
In fig. 5 the ratio of the transition probability with and
without mutations is shown versus the amount of change
in the binding energy of the sites at SHL±0.5. Our model
predicts a 4 times higher transition rate —and thus a
four times higher mobility— when the inner binding sites
are weakened by just 13%. This pronounced sensitivity is
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Fig. 5. Ratio of probabilities for passing of the twist defect
through the nucleosome with and without sin mutations versus
change in the strength of the binding sites at SHL±0.5. U0 is
the binding strength of those sites in the absence of mutations.
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Fig. 6. Potential energy felt by the nucleosome at different
locations around the 5S rDNA positioning sequence.

caused by the fact that many defects are reflected at the
most inner sites as these are the strongest in the nucleo-
some, see fig. 4.

3.5 Effect of sequence-dependent elasticity of DNA on
nucleosome positioning and repositioning

To study the sequence-dependent properties of nucleoso-
mal DNA, we start with a 207 base pairs long sequence
containing the 5S rDNA positioning sequence [14]. This
sequence offers the nucleosome 61 different possible po-
sitions. We performed separate simulations for the 147
wrapped bp for each position. When the nucleosome is
moved by one bp, we need to rotate it also by one tenth
of a full turn. In fig. 6 average elastic energies are shown
for all 61 positions. This curve shows several interesting
features. The absolute minimum of the curve occurs at
position 6 which is in agreement with Morozov et al. [27].
Also this position is very close to the positioning site found
in the experiment [14]. Sequence-dependent elasticity of
DNA also predicts the experimentally observed 10 base
pair distance between the preferred nucleosome locations

Table 3. Rates of going over barriers for 5S rDNA for different
positions (s−1), see fig. 6.

Rate Left Right
k1 0.091 0.254

k2 0.251 0.122

k3 0.173 0.259

k4 0.229 0.201

k5 0.133 0.065

k6 0.109 -

reflecting the optimal direction of bending of the DNA on
the octamer.

We use now this finding, together with what we ob-
tained for the diffusion of a single twist defect in eq. (10),
to estimate the effective diffusion constant of nucleosome
sliding along such a piece of DNA. Using the (approx-
imate) 10 bp periodicity, we can estimate the effective
diffusion constant as follows:

Deff =
100 bp2

2Teff
. (11)

Here Teff is the time typically spent in each minimum. The
inverse of this time, k = T−1

eff , follows from Kramer’s rate
theory to be

k =

√
U ′′(xmin)U ′′(xmax)

2πζ
e−A/kBT . (12)

In this equation U ′′(xmax) and U ′′(xmin) are the curva-
tures of the elastic energy at the top of the barriers and
at the bottom of the minima, A is the barrier height,
and ζ = kBT/D with D ≈ 240 bp2/s, see eq. (10). By
fitting parabolic functions to every minimum and maxi-
mum and measuring barrier heights at the different po-
sitions, the rate values at different locations can be de-
termined. These values are shown in table 3. According
to this table, the average rate is about 0.172 s−1. Putting
this value into eqs. (11) and (12) we arrive at a diffusion
constant of 8.6 bp2/s which is close to the experimental
value ≈ 1 bp2/s. We conclude that the twist defect sce-
nario together with sequence-dependent elasticity explains
the slow time scale of the nucleosome sliding phenomenon.

We repeated the same simulation for the 601 position-
ing sequence. From all 135 different possible positions, we
only simulated between positions 28 to 72 that contain
position 50, the position with the highest affinity. Accord-
ing to fig. 7 our model shows a 10 bp separation between
preferred locations. In comparison with the 5S rDNA se-
quence, the absolute minimum of this curve, at position 40
in our model, has a lower elastic energy than each of the
6 positions of the 5S rDNA sequence. This is compatible
with the fact that the 601 sequence has a higher affinity for
nucleosomes [41]. In addition, we find here substantially
higher barriers between the preferred locations. This sug-
gests a lower mobility in the vicinity of the 601 positioning
sequence as compared to 5S rDNA. Our calculations also
show higher barriers for the 601 sequence in comparison
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Fig. 7. Potential energy for the 601 positioning sequence. Only
positions 28 to 72 are shown.

Table 4. Effective diffusion coefficient for different telomeric
sequences.

Sequence Deff (bp2/s)

Arabidopsis thaliana (GGGTTTA) 45.1

Mammals (GGGTTA) 14.5

Saccharomyces cerevisiae (GGTGTGTG) 122.3

Tetrahymena (GGGGTT) 31.5

with [27]. Doing the same calculation as before we ob-
tain here an effective diffusion constant Deff ≈ 0.03 bp2/s,
which is 2 orders of magnitude smaller than that for 5S
rDNA.

We finally studied the sequence-dependent elasticity
for telomeric sequences. Telomeric sequences are short
tandem repeats of DNA (usually 6 to 8 base pairs long)
and are found at the chromosome ends. It has been shown
that these sequences do not have a strong affinity for nucle-
osomes and that nucleosome mobility is enhanced [19,42].
Here we simulated nucleosomal DNA for 4 different telom-
eric sequences (see table 4). Comparing the absolute min-
ima of the elastic energy curves in fig. 8 with each other
and with the 5S rDNA and 601 sequences we find for the
lowest possible energy of each sequence:

U601 < U5S rDNA < Uthaliana ≈ Umammals

< Ucerevisiae < UTetrahymena. (13)

The above qualitative result shows a good agreement with
in vitro affinity measurements of these sequences [41,42].

From fig. 8 one can also see that for telomeric se-
quences one has smaller barriers between different posi-
tions in comparison to the 601 and 5S rDNA positioning
sequences. This explains the high mobility of nucleosomes
on telomeric sequences. In table 4 we present the effec-
tive diffusion constant for these four telomeric sequences.
They are between 1.7 and 14 times larger than the one we
found for the 5S rDNA sequence.
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Fig. 8. (Color online) Potential energy of the nucleosome as a
function of the position for four different telomeric sequences.

4 Conclusion

Here we introduced a rigid base pair molecular dynam-
ics model for nucleosomal DNA including interactions to
the histone octamer via 14 binding sites. Our model is
capable to reproduce experimental results found for the
nucleosome crystal structure: fluctuations of the DNA
phosphates and the preferred locations of one base pair
twist defects. More importantly, we demonstrated that
the model is also very successful in predicting various ef-
fects occurring for room temperature: twist defect diffu-
sion through nucleosomes causing their repositioning, the
role of sin mutations in affecting nucleosome mobility and
that of the underlying base pair sequence in slowing down
the kinetics. Our coarse-grained model allows thus to sim-
ulate such processes on biologically relevant time scales
which would be otherwise inaccessible.

In conclusion, our results suggest that the elasticity of
DNA, even in harmonic approximation, is able to explain
a wide range of phenomena that has been observed for
nucleosomes.

We thank Prof. Ralf Everaers and Dr. Behrouz Eslami-
Mossallam for helpful discussions.

Appendix A. Force and torque calculations
for the elastic energy of base pairs

Suppose that we have two neighboring bp’s interacting
with each other and that the conformation of the second
bp is given by the rotation matrix R and the location
vector x in the local coordinates of the first bp. The three
components of the force acting on the second bp in the
local Cartesian coordinates of the first bp can be written
as

Fk = −∂U(R, x)
∂xk

, k = 1, 2, 3, (A.1)

where the xk’s are the components of the Cartesian coor-
dinates, the Fk’s are the force components in the corre-
sponding direction, and U(R,x) is defined in eq. (1). By
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using the symmetry of the stiffness matrix one finds the
forces as

Fk = − ∂ψi

∂xk
Kij(ψj − ψ0j) summation over i, j = 1, . . . , 6,

(A.2)
where ψ=[Twist,Tilt,Roll,Shift,Slide,Rise] is the relative
conformation of the base pairs and K, ψ0, and ψ are de-
fined in the midframe coordinate system [29]. The three
rotational components of ψ do not depend on the relative
translation of the bp’s [29]. So the partial derivative of
these components with respect to xk is equal to zero

∂ψi

∂xk
= 0, i = 1, 2, 3. (A.3)

On the other hand translational parameters can be
found from the midframe coordinate Rm [29]:

ψi = Rmi−3jxj , i = 4, 5, 6. (A.4)

Knowing that the midframe orientation does not depend
on the xk’s, partial derivatives of Shift, Slide, and Rise
with respect to xk can be easily obtained as

∂ψi

∂xk
= Rmi−3j

∂xj

∂xk
=Rmi−3jδjk =Rmi−3k, i = 4, 5, 6.

(A.5)

By substituting eqs. (A.3) and (A.5) in (A.2) we have

Fk = −Rmi−3kKij(ψj − ψ0j),
i = 4, . . . , 6, j = 1, . . . , 6. (A.6)

To obtain the acting torque on the second bp we have used
the virtual work method numerically. Virtual rotations are
applied in three orthogonal directions and the difference
between the potential energies before and after a small
virtual rotation is measured. From the ratio of the differ-
ence in the potential energies and h, the amount of the
virtual rotation, the value of torque at the corresponding
direction can be found

Mi = −U(hεi · R,x) − U(R,x)
h

, i = 1, 2, 3. (A.7)

Here Mi is the component of torque in the corresponding
direction, and εi is the asymmetric third-order tensor. We
choose here h = 0.00001. To reduce computational costs,
force and torque on the first bp are calculated with the
equilibrium conditions.

References

1. H. Schiessel, J. Phys.: Condens. Matter 15, R699 (2003).
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